Name

REVIEW 5 Day 1 Calculator NOT Permitted

FRQ 1: The table below shows function values for a rational function, G(x). The equation of G(x) is such that (x + 2) and (x - 1) are the only factors in the denominator of the function.

x	-1000	-2.001	-2	-1.999	0	0.999	1	1.001	1000
G(x)	0.998	0.333	Undefined	0.333	-1	-1999	Undefined	2001	1.002

a. Does either factor in the denominator also exist in the numerator? If so, which factor? Give a reason for your answer.

b. Does either factor of the denominator not exist in the numerator? If so, which factor? Give a reason for your answer.

$$\lim_{x \to 1^-} G(x) = -\infty$$

$$\lim_{x \to 1^-} G(x) \quad \text{has a vertical asymptote at } x = 1$$

$$\lim_{x \to 1^+} G(x) = \infty$$

$$\lim_{x \to 1^+} G(x) = \infty$$

c. Based on the end behavior, where does G(x) have a horizontal asymptote? Give a reason for your answer.

$$\lim_{x \to -\infty} G(x) = 1$$

$$\lim_{x \to -\infty} G(x) = 1$$

$$\lim_{x \to \infty} G(x) = 1$$

d. Sketch a possible graph of the function G(x). Then, state the domain and range of G(x).

Calculator NOT Permitted

FRQ 2: Consider the rational functions $f(x) = \frac{2}{x-3}$ and $g(x) = \frac{x-2}{x^2-9}$ to answer the following questions. a. At what value(s) of x will the graphs of f(x) and g(x) have discontinuities? Explain your reasoning.

b. If $h(x) = f(x) \cdot g(x)$, find an equation for h in standard form and then determine at what value of y will the graph of h have a horizontal asymptote? If no such value exists, state so. Give a reason for your answer.

$$h(x) = \frac{2}{x^{-3}} \cdot \frac{x^{-3}}{x^{2}-9} \cdot T_{x} h(x), \text{ degree of the numerator is less that the denominator.}$$

$$h(x) = \frac{3x \cdot 4}{x^{3}-9x - 3x^{2}+37} \quad \therefore h(x) h(x) \text{ a horizontal asymptote at } \gamma=0.$$

On what intervals will $f(x) \ge g(x)$? Show the complete algebraic and sign analysis that leads to your answer. c.

Name

Xt

Calculator NOT Permitted

FRQ 3: The graph of the rational function, h(x), pictured to the right is such that h(-1.5) = 0 and has a hole at the point $\left(2, -\frac{7}{5}\right)$.

d. In standard form, find an equation for h(x). Give two graphical and algebraic connections that confirm that your standard form equation is correct.

$$h(x) = \frac{(2x+3)(x-2)}{(x+3)(x-2)}$$

$$h(x) = \frac{(2x+3)(x-2)}{(x+3)(x-2)}$$

$$h(x) = \frac{(2x^{2}-x-6)}{x^{2}+x-6}$$

$$h(x) = \frac{-2x^{2}+x+6}{x^{2}+x-6}$$

$$\frac{(2x+3)(x-2)}{x^{2}+x-6}$$

$$\frac{(2x+3)(x-2)}{(x+3)(x-2)}$$

$$\frac{(x+3)(x-2)}{(x+3)(x-2)}$$

· · ·

3. A rational function has a vertical asymptote at x = -1, a horizontal asymptotes at y = 7 and y = 9 and a hole in the graph at the point (4, -5). What are the domain and range of the rational function?

A. Domain:
$$(-\infty, \infty)$$
 X
B. Domain: $(-\infty, -1) \cup (-1, \infty)$ X
C. Domain: $(-\infty, -1) \cup (-1, 4) \cup (4, \infty)$ Range: $(-\infty, -5) \cup (-5, 7) \cup (7, 9) \cup (9, \infty)$
E. Domain: $(-\infty, -1) \cup (-1, 4) \cup (4, \infty)$ Range: $(-\infty, -5) \cup (-5, 7) \cup (7, 9) \cup (9, \infty)$
E. Domain: $(-\infty, -1) \cup (-1, 4) \cup (4, \infty)$ Range: $(-\infty, 7) \cup (7, \infty)$ X

Name

4. What does the graph of $f(x) = \frac{x^2 - 3x}{x^2 + 2x - 15}$ look like at the value x = 3. $\frac{x(x-3)}{(x-3)(x+5)}$

- A. There is a vertical asymptote at x = 3. B. There is a point discontinuity at x = 3.
- C. There is a jump in the graph at x = 3. D. The graph is continuous at x = 3.
- E. The graph passes through and includes the point $\left(3, \frac{3}{8}\right)$.
- 5. Which of the following statements is/are true about the rational function $f(x) = \frac{x(x-10)(x+7)}{x(x+7)}$?
 - I. The graph of f(x) has a hole in it at the point (-7, -17). Here $\mathcal{O}\left(-7, \frac{-7(-7)}{27}\right)$
 - II. The graph of f(x) has a vertical asymptote at x = -7.
 - III. The graph of f(x) will cross the x axis at x = 0, x = 10 and x = –7.

6. Which of the following rational functions have a point discontinuity at x = 5 and a horizontal asymptote that is on the x - axis?

symptote that is on the $x - a$	1XIS? x-5 (x-	-5) x/ HA: n <a< th=""></a<>
ned	(x-5)(2x+5) (X-	
I. $f(x) = \frac{x^2 - 2x - 15}{3x^2 - 16x + 5} X$	II. $g(x) = \frac{x-5}{2x^2-7x-15}$	III. $h(x) = \frac{2x-6}{x^2-8x+15} \simeq \frac{2(x-3)}{(x-3)(x-5)}$
	51-KE + X01- EXE	
	2x(x-5)+3(x-5)	
	(x-5)(2x+3)	
A. I only	B. I and II only	C. II only
D. III only	E. II and III only	F. I and III only

- 7. Which of the following statements is/are true about the function, g(x), whose graph is pictured to the right?
 - I. The factors (x + 2) and x are guaranteed to be in the numerator of the equation of g(x).
 - X II. The leading coefficient of the numerator of the equation of g(x) is 3.
 - III. The factor (x 2) is guaranteed to be in the denominator of the equation of g(x).
 - A. I only
- B. I and III only
- C. I and II only
- D. III only
- E. I, II, and III

$$g(x) \stackrel{\sim}{=} \frac{\chi(x+2)}{(x-2)}$$

SA: Y=x

Name

REVIEW 5 Day 2 Calculator NOT Permitted

FRQ 5: The rational function $F(x) = \frac{(ax-3)(x-2)}{2(x+3)(x-2)}$ is such that y = -2 is a horizontal asymptote.

a. Why does the provided equation support the fact that there is a horizontal asymptote of F(x) that is not on the x – axis?

The degree of the numerator and denominator are equal. (1) = F(x) has a horizontal Asymptote that is not on X-axis. +1

b. Find the correct value of *a*. Show your work and justify your thinking.

The degree of the numerator and denominator are equal. . The horizontal asymptote is the ratio of the lead coefficients $\frac{\alpha}{2} = -2 \qquad \text{tl} \qquad \alpha = -4$

c. Does the graph of F(x) have any vertical asymptotes? Why or why not? If any vertical asymptotes exist, what is/are the equations?

F(x) has a non canceling factor of (x+3) in the denominator. +1 : E(x) has a vertical asymptote at x=-3 +1

d. Does the graph of F(x) have any holes in it? Why or why not? If any holes exist, what are the coordinates of the holes?

F(x)'s numerator and denominator share a factor of (x-2). (1 : F(x) has a hole at x=2 (1) $F(x) = \frac{-4(x-3)}{2(x+3)}$ $F(x) = \frac{-4(2)-3}{2(2+3)} = \frac{-8-3}{2(5)} = \frac{-11}{10}$ HOLE $(2, -\frac{11}{10})$ (1)

29

Multiple Choice – Calculator NOT Permitted

- 8. If it is known that p(3) = 0, which of the following statements is true?
 - A. (x + 3) is a non-canceling factor in the numerator.
 - B. The ratio of the constant terms of the numerator and denominator is 3. imes
 - χ C. (x - 3) is a canceling factor.
- \sqrt{D} . (x 3) is a non-canceling factor in the numerator.
 - E. (x 3) is a non-canceling factor in the denominator.

- A. f(x) has two values of x at which point discontinuities exist. \mathbb{N}^{O}
- B. f(x) is continuous for all values of x. NO
- C. f(x) has one value of x at which a jump discontinuity exists.
- D.) f(x) has two values of x at which infinite discontinuities exist. $\int \sqrt{2} dx$
- E. f(x) has one point discontinuity and one infinite discontinuity.

Name

10. Which of the following rational equations could be the function graphed?

12. If $h(x) = \frac{(1-5x)(2x+2)}{(x+2)(2x-3)}$, then what is the equation of the horizontal asymptote, if one exists?

A.
$$y = -5$$

B. $y = 1$
C. $y = -\frac{5}{2}$
D. $y = \frac{5}{3}$

$$h(x) = \frac{-10x^3 + \cdots}{2x^3 + \cdots}$$

E. No horizontal asymptote exists

13. Which of the following factors is/are non-removable factors of the denominator of f(x)?

VA@X=1 : (X-1) D

HA Criss Gy=3

I. (x-1)H. (x+3)III. (x-3)A. I only B. Honly C. I and II only D. III only E. II and III only

- 14. Which of the following statements is/are true about the function, f(x)?
 - I. The degree of the numerator is equal to the degree of the denominator in the equation of f(x). False
 - II. The factor (x-3) appears in both the numerator and the denominator of the equation of f(x).
 - III. If a and b are the leading coefficients of the numerator and denominator, respectively, then the value of $\frac{a}{b} = 3$.

 A. I and III only

 B. I and II only

 C. III only

 D. II and III only

 E. I, II, and III