\qquad
REVIEW 5 Day 1
Calculator NOT Permitted

FRQ 1: The table below shows function values for a rational function, $G(x)$. The equation of $G(x)$ is such that $(x+2)$ and $(x-$ $1)$ are the only factors in the denominator of the function.

\boldsymbol{x}	-1000	-2.001	-2	-1.999	0	0.999	1	1.001	1000
$\boldsymbol{G}(\boldsymbol{x})$	0.998	0.333	Undefined	0.333	-1	-1999	Undefined	2001	1.002

a. Does either factor in the denominator also exist in the numerator? If so, which factor? Give a reason for your answer.

$$
\lim _{x \rightarrow-2^{-}} G(x)=\frac{1}{3}
$$

$\therefore G(x)$ has point discontinuity at $x=-2$
$+1$

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} G(x)=\frac{1}{3} \\
& G(-2) \neq \frac{1}{3}
\end{aligned}
$$

$\therefore(x+2)$ is a factor in both the numerator and denominator.
b. Does either factor of the denominator not exist in the numerator? If so, which factor? Give a reason for your answer.

$$
\lim _{x \rightarrow 1^{-}} G(x)=-\infty\left\{\begin{array}{l}
\therefore(x) \text { has a vertical asymptote at } x=1 \\
\lim _{x \rightarrow 1^{+}} G(x)=\infty
\end{array}\right\} \begin{gathered}
G(x-1) \text { is a factor of the denominator } \\
\text { only. }
\end{gathered}
$$

c. Based on the end behavior, where does $G(x)$ have a horizontal asymptote? Give a reason for your answer.

d. Sketch a possible graph of the function $G(x)$. Then, state the domain and range of $G(x)$.

$$
=(-\infty,-2)(-1,1)(1, \infty)(1)
$$

Calculator NOT Permitted
FRQ 2: Consider the rational functions $f(x)=\frac{2}{x-3}$ and $g(x)=\frac{x-2}{x^{2}-9}$ to answer the following questions.
a. At what values) of x will the graphs of $f(x)$ and $g(x)$ have discontinuities? Explain your reasoning.

The graphs of $f(x)$ ad $g(x)$ will have discontinuities when the denominates are equal to zero.
$\therefore f(x)$ is undefined at $x=3$
$\therefore g(x)$ is undefined at $x=-3$ and $x=3\}$
b. If $h(x)=f(x) \cdot g(x)$, ind an equation for h in standard form and then determine at what value of y will the graph of h have a horizontal asymptote? If no such value exists, state so. Give a reason for your answer.
$h(x)=\frac{2}{x-3} \cdot \frac{x-2}{x^{2}-9} \cdot I_{N} h(x)$, degree of the numerator is less the the denominator.
$h(x)=\frac{\partial x-4}{x^{3}-a x-3 x^{2}+27} \quad \therefore h(x)$ has a horizontal asymptote at $y=0$.

$$
n(x)=\frac{2 x-4}{x^{3}-3 x^{2}-9 x+27}
$$

c. On what intervals will $f(x) \geq g(x)$? Show the complete algebraic and sign analysis that leads to your answer.

$$
\begin{align*}
& \frac{2}{x-3} \geq \frac{x-2}{x^{2}-9} \\
& \frac{(-)}{(-)(-)} \frac{t}{(-)(-)} \frac{t}{(-)(t)} \frac{t}{(t)(t)} \\
& \frac{(x+3)}{(x+3)} \frac{2}{x-3}-\frac{x-2}{(x-3)(x+3)} \geq 0 \\
& \frac{2 x+6}{(x+3)(x-3)}-\frac{x-2}{(x-3)(x+3)} \geq 0
\end{align*}
$$

$$
\begin{aligned}
& f(x) \geq g(x) \text { on }[-8,-3) \cup(3, \infty)
\end{aligned}
$$

FRQ 3: The graph of the rational function, $h(x)$, pictured to the right is such that $h(-1.5)=0$ and has a hole at the point $\left(2,-\frac{7}{5}\right) \cdot(x-2) / N / D$
a. State the domain and range of $h(x)$.

$$
\begin{aligned}
& \text { Domain }=(-\infty,-3) u(-3,2) u(2, \infty)^{+1} \\
& \text { Range }=(-\infty,-2) u(-2,-7 / 5) u\left(-\frac{7}{5}, \infty\right)^{+1}
\end{aligned}
$$

b. What factors) is/are guaranteed to be in the denominator of the equation of $h(x)$? Give a reason for your answer.

FActors in THE Denomination cause descontinaties S.
$h(x)$'s graph has discontinuities at $x=-3$ and $x=2$
$\therefore h(x)$ has factors of $(x+3)$ and $(x-2)$ in the denominator +1
c. For what values) of x is $h(x) \leq 0$? Give a graphical reason for your answer.

If $h(x) \leq 0$, then the graph of $h(x)$ is on or bela the x-axis.

$$
\therefore h(x) \leq 0 \text { on }(-\infty,-3) \cup[-1.5,2) u(2, \infty)
$$

d. In standard form, find a equation for $h(x)$. Give two graphical and algebraic connections that confirm that your standard form equation is correct.

$$
\begin{aligned}
h(x) & =\frac{-(2 x+3)(x-2)}{(x+3)(x-2)} \\
h(x) & =\frac{\left(2 x^{2}-x-6\right)}{x^{2}+x-6} \\
+1(x) & =\frac{-2 x^{2}+x+6}{x^{2}+x-6}
\end{aligned}
$$

. In $h(x)$ the ratio of the constants
is $\frac{6}{-6}=-1$, which is the $y-i n t$.
. $h(x)$'s graph has a hole at $x=2$
and $h(x)$ has $(x-2)$ as faction
of the numeration is denomination

- The graph of $h(x)$ has a $H A @ y=-2$ and $h(x)$ has same degree in numeration and denomuation with ratio of/ead coefficients $\frac{-2}{1}=-2$
- The gap of $n(x)$ has a VA $Q x=-3$ and $h(x)$ has a nom- canceling faction of $(x+3)$ in the denomination.
- The grape of $h(x)$ has a zens at $x=-1.5$ ant $h(x)$ has a non (canceling factor of $(2 x+3)$ is the numeration

1. If $P(x)=\frac{(3-2 x)(x+3)}{(x+3)(x-1)}$, then which of the following statements is/are true?
VA @XII
$H A \propto y=\frac{-2}{1}$
I. The graph of $P(x)$ has a horizontal asymptote at $y=-2$.
II. The graph of $P(x)$ has a point discontinuity at $\left(-3,-\frac{9}{4}\right)$.
III. The graph of $P(x)$ has a y - intercept at $(0,-3)$. \checkmark
A. I and II only
B. I and III only
D. I only

C. II and III only

2. Identify the x-values) of any non-removable discontinuity in the function $f(x)=\frac{2 x^{2}-3 x-9}{x^{2}-9}=\frac{(x-3)(2 x+3)}{(x-5)(x+3)}$
$H 0 l e$
$x=3$
VA
II. $x=-3$
III. $x=-\frac{3}{2}$
$\operatorname{VAC} x=-3$
A. I only
B. Il only
D. II and III only
E. I, II and III
C. I and II only
3. A rational function has a vertical asymptote at $x=-1$, a horizontal asymptotes at $y=7$ and $y=9$ and a hole in the graph at the point $(4,-5)$. What are the domain and range of the rational function?

$$
D: R, x+-1,4 \quad R: R, y \neq-5,7,9
$$

A. Domain: $(-\infty, \infty) \mathcal{X}$

Range: $(-\infty, \infty) \boldsymbol{\gamma}$
B. Domain: $(-\infty,-1) \cup(-1, \infty) \chi$ Range: $(-\infty, \infty) \chi$
C. Domain: $(-\infty,-1) \cup(-1,4) \cup(4, \infty)$ Range: $(-\infty, 7) \cup(7,9) \cup(9, \infty) \subset$
D. Domain: $(-\infty,-1) \cup(-1,4) \cup(4, \infty)$ Range: $(-\infty,-5) \cup(-5,7) \cup(7,9) \cup(9, \infty)$
E. Domain: $(-\infty,-1) \cup(-1,4) \cup(4, \infty)$ Range: $(-\infty, 7) \cup(7, \infty) \chi$
4. What does the graph of $f(x)=\frac{x^{2}-3 x}{x^{2}+2 x-15}$ look like at the value $x=3 . \frac{x(x-3)}{(x-3)(x+5)}$
A. There is a vertical asymptote at $x=3$.
Brymere is a point discontinuity at $x=3$.
C. There is a jump in the graph at $x=3$.
D. The graph is continuous at $x=3$.
E. The graph passes through and includes the point $\left(3, \frac{3}{8}\right)$.
5. Which of the following statements is/are true about the rational function $f(x)=\frac{x(x-10)(x+7)}{x(x+7)}$?
I. The graph of $f(x)$ has a hole in it at the point $(-7,-17)$ Hole $3\left(-7, \frac{-x(-17)}{-x}\right)$
II. The graph of $f(x)$ has a vertical asymptote at $x=-7$.
III. The graph of $f(x)$ will cross the x - axis at $x=0, \mathrm{x}=10$ and $x=-7$.
A. I, II and III
B. I and II only
C. II only
D. I and III only
E. I only
6. Which of the following rational functions have a point discontinuity at $x=5$ and a horizontal asymptote that is on the x-axis?

$$
n=d
$$

HA: $n<d$
I. $f(x)=\frac{x^{2}-2 x-15}{3 x^{2}-16 x+5} \chi$
II. $g(x)=\frac{x-5}{2 x^{2}-7 x-15}$
III. $h(x)=\frac{2 x-6}{x^{2}-8 x+15}=\frac{2(x-3) x}{(x-3)(x-5)}$

$$
\frac{2 x^{2}-10 x}{2 x+\underbrace{3 x-15}} \begin{aligned}
& 2 x-5)+3(x-5) \\
& (x-5)(2 x+3)
\end{aligned}
$$

A. I only
B. I and II only
C. II only
D. III only
E. II and III only
F. I and III only
7. Which of the following statements is/are true about the function, $g(x)$, whose graph is pictured to the right?
$\sqrt{ }$ I. The factors $(x+2)$ and x are guaranteed to be in the numerator of the equation of $g(x)$.
II. The leading coefficient of the numerator of the equation of $g(x)$ is 3 .
III. The factor $(x-2)$ is guaranteed to be in the denominator of the equation of $g(x)$.
A. I only
C. I and II only
E. I, II, and III
B. I and III only
D. III only

$$
g(x)=\frac{x(x+2)}{(x-2)}
$$

\qquad

REVIEW 5 Day 2

Calculator NOT Permitted

FRQ 5: The rational function $F(x)=\frac{(a x-3)(x-2)}{2(x+3)(x-2)}$ is such that $y=-2$ is a horizontal asymptote.
a. Why does the provided equation support the fact that there is a horizontal asymptote of $F(x)$ that is not on the x-axis?

The degree of the numerator and denominator are equal. $+1$ $\therefore F(x)$ has a horizontal Asymptote that is not on x-axis. +1
b. Find the correct value of a. Show your work and justify your thinking.

The degree of the numerator and denominator are equal.
\therefore The horizontal asymptote is the ratio of the lead coefficients

$$
\begin{align*}
\frac{a}{2} & =-2 \\
a & =-4
\end{align*}
$$

c. Does the graph of $F(x)$ have any vertical asymptotes? Why or why not? If any vertical asymptotes exist, what is/are the equations?
$F(x)$ has a non canceling factor of $(x+3)$ in the denominator. +1
$\therefore E(x)$ has a vertical asymptote at $x=-3+1$
d. Does the graph of $F(x)$ have any holes in it? Why or why not? If any holes exist, what are the coordinates of the holes?
$F(x)$'s numerator and denominator share a factor of $(x-2)$. +1
$\therefore F(x)$ has a hole at $x=2$
$+1$
$F(x)=\frac{-4 x-3}{2(x+3)}$

$$
F(2)=\frac{-4(2)-3}{2(2+3)}=\frac{-8-3}{2(5)}=\frac{-11}{10}
$$

$$
\text { HOLE }(2,-11 / 10)
$$

8. If it is knowrthat $p(3)=0$, which of the following statements is true?
A. $(x+3)$ is a non-canceling factor in the numerator.
B. The ratio of the constant terms of the numerator and denominator is 3 .

C. $(x-3)$ is a canceling factor. X
D. $(x-3)$ is a non-canceling factor in the numerator.
E. $(x-3)$ is a non-canceling factor in the denominator. \mathcal{X}
9. Which of the following statements is true about the function $f(x)=\frac{x^{2}-4}{x^{2}+2 x-3}$? $=\frac{(x-2)(x+2)}{(x+3)(x-1)}$
A. $f(x)$ has two values of x at which point discontinuities exist.
B. $f(x)$ is continuous for all values of x.
C. $f(x)$ has one value of x at which a jump discontinuity exists.
D. $f(x)$ has two values of x at which infinite discontinuities exist.
E. $f(x)$ has one point discontinuity and one infinite discontinuity.
\qquad
10. Which of the following rational equations could be the function graphed?
A. $f(x)=\frac{2 x(x-3)}{(x+2)(x-3)}$
B. $f(x)=\frac{(2 x+1)(x+3)}{(x+3)(x+2)}$
C. $f(x)=\frac{2 x(x+2)}{(x+2)(x-3)}$
D. $f(x)=\frac{(2 x+1)(x-3)}{(x-3)(x+2)}$
E. $f(x)=\frac{(2 x+1)(x-3)}{(x-3)(x-2)}$
$\frac{(2 x+1)(x-3)}{(x-3)(x+2)}$

11. Solve the rational inequality $\frac{3}{x-2}>\frac{2}{x^{2}-4} . \frac{(x+2) \frac{3}{(x+2)(x-2)}-\frac{2}{(x-2)(x+2)}>0}{}>0$
A. $(-\infty,-2) \cup\left(-\frac{4}{3}, 2\right)$
B. $(-\infty,-2] \cup\left[-\frac{4}{3}, 2\right]$

$$
\frac{3 x+6-2}{(x-2)(x+2)}>0
$$

C. $\left(-2,-\frac{4}{3}\right] \cup(2, \infty)$
D. $(-\infty,-2) \cup\left[-\frac{4}{3}, 2\right)$

$$
\frac{3 x+4}{(x-2)(x+2)}>0
$$

E. $\left(-2,-\frac{4}{3}\right) \cup(2, \infty)$

12. If $h(x)=\frac{(1-5 x)(2 x+2)}{(x+2)(2 x-3)}$, then what is the equation of the horizontal asymptote, if one exists?

B. $y=1$

$$
h(x)=\frac{-10 x^{2}+\cdots}{2 x^{2}+\cdots}
$$

C. $y=-\frac{5}{2}$
D. $y=\frac{5}{3}$
E. No horizontal asymptote exists

For questions $13-14$ ，refer to the graph of the rational function pictured．

13．Which of the following factors is／are non－removable factors of the denominator of $f(x)$ ？
I．$(x-1)$
II．$(x+3)$
III．$(x-3)$

A．I only
C．I and II only
D．III only
E．II and III only

14．Which of the following statements is／are true about the function，$f(x)$ ？

$$
\text { HA excess o } y=3
$$

I．The degree of the numerator is equal to the degree of the denominator in the equation of $f(x)$ ．
II．The factor $(x-3)$ appears in both the numerator and the denominator of the equation of $f(x)$ ．
III．If a and b are the leading coefficients of the numerator and denominator，respectively，then the value of $\frac{a}{b}=3$ ．ग ne ヤャA © Yころ
A．I and III only
B．I and II only
C．III only
E．I，II，and III

