PreAP PreCalculus Semester 1 Multiple Choice Review

Unit 1

1. C
2. B
3. \mathbf{E}
4. A
5. D
6. C
7. \mathbf{A}
8. E
9. D
10. C
11. D
12. E
13. A
14. E
15. A
16. B

Unit 2
17. B
18. B
19. A
20. C
21. E
22. B
23. D
24. C
25. A

Unit 3
26. D
27. E
28. B
29. C
30. C
31. D
32. B
33. B
34. A

Unit 4
35. C
36. C
37. E
38. D
39. A
40. C
41. E
42. B
43. D

Unit 5
44. E
45. B
46. D
47. A
48. B
49. C
50. E
51. C
52. D

Unit 1 MULTIPLE CHOICE No Calculator

1. The graph of a function $h(x)$ is pictured to the right. If $p(x)=-2|x-3|+3$, then for what value(s) of x is the function $p(x)=h(-5)$?
A. $x=1$ only
B. $x=-2$ and 2
C. $x=2$ and 4
D. $x=-5$ and 1
E. $x=1$ and 5

2. The graph of a function $f(x)$ is pictured to the right. Which of the following statements is/are true about the graph of $f(x)$?
I. The graph of $f(x)$ is decreasing on the interval $(-2, \infty)$.
II. The value of $f(x)=5$ for all values of x on the interval $[-6,-2]$.
III. The domain of $f(x)$ is $[-6,-2) \cup(-2, \infty)$.
A. I and III only
B. III only

C. II only
D. II and III only
E. I, II and III
3. The graph of $f(x)$ is shown to the right. Which of the following intervals correctly identifies all values of x for which $f(x)<0$?
A. $(-6,-4) \cup(0, \infty)$
B. $[-6,-4] \cup[0, \infty)$
C. $[-6,-4) \cup(0,2) \cup(2, \infty)$
D. $(-6,-4) \cup[0, \infty)$
E. $(-6,-4) \cup(0,2) \cup(2, \infty)$

4. Use the table of values to the right to determine the value of $[f(-2)+2 \cdot g(2)]$.
A. 6
B. 10
C. 1
D. 3
E. -2

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
-2	-2	3
-1	2	3
2	0	4
3	-1	3

5. If $g(x)=\sqrt{x+3}-2$, for what value(s) of x is $g(x)=1$?
A. $x=3$
B. $x=0$
C. $x=8$
D. $x=6$
E. No value of x will make $g(x)=1$.
6. Which of the following graphs is the graph of the function $g(x)=-(x+3)^{3}+2$?

D.

7. Suppose that $g(x)=(x-3)^{2}-5$. Which of the following statements is true if $f(x)$ is the function pictured?
A. $g(2)<f(3.5)$
B. $g(2)>f(3.5)$
C. $g(2)=f(3.5)$
D. No comparison can be made because $f(3.5)$ cannot be determined.
E. No comparison can be made because $g(2)$ cannot be determined.

8. The graph of $f(x)$ is the dashed line graph and $g(x)$ is the solid line graph pictured. Which of the following best describes where the graph of $g(x) \leq 0$?
A. $[-5,-3] \cup[6,7]$
B. $(-3,0) \cup(0,6)$
C. $(-5,-3] \cup[6,7)$
D. $[-3,6]$
E. $[-5,-3] \cup[6,7]$ and $x=0$

9. Consider the functions $f(x)=2 x^{2}+3 x-2$ and $g(x)=x-2$. Find an equation for $f(g(x))$.
A. $f(g(x))=x^{2}-8 x+4$
B. $f(g(x))=2 x^{3}-4 x^{2}-5 x+4$
C. $f(g(x))=2 x^{3}-x^{2}-8 x+4$
D. $f(g(x))=2 x^{2}-5 x$
E. None of these
10. Identify the domain of the function $g(x)=\frac{3-x}{x^{2}-x-20}$
A. $(-\infty,-4) \cup(-4,3) \cup(3,5) \cup(5, \infty)$
B. $(-\infty, 3) \cup(3, \infty)$
C. $(-\infty,-4) \cup(-4,5) \cup(5, \infty)$
D. $(-\infty, \infty)$
E. The domain cannot be determined.
11. The graph of $f(x)$ is shown to the right and $g(x)=\sqrt{2 x-1}$. What is the value of $f(g(5))$?
A. 3
B. 7
C. 19
D. -2
E. Undefined

12. What is the domain of the function $f(x)=\sqrt{6-2 x}$.
A. $(-\infty, 3) \cup(3, \infty)$
B. $(-\infty, 3)$
C. $[3, \infty)$
D. $(3, \infty)$
E. $(-\infty, 3]$
13. For what value of a would the function $g(x)=\left\{\begin{array}{l}a x-3, x<-2 \\ x^{2}-2 x, x>-2\end{array}\right.$ have a point discontinuity at $x=-2$.
A. $a=-\frac{11}{2}$
B. $a=-\frac{3}{2}$
C. $a=-\frac{5}{2}$
D. $a=\frac{5}{2}$
E. No value of a will make the function have a point discontinuity at $x=-2$.

Use the graphs of $f(x)$ and $g(x)$ pictured below to answer questions 14 and 15.

14. Which of the following statements is/are true about the graphs of $f(x)$ and $g(x)$, pictured above?
I. $g(x)$ is constant on the interval $(-5,1)$.
II. $f(x) \geq 0$ only on the interval $(-3.5,7)$.
III. $g(x)>f(x)$ only on the interval $[-5,5)$.
A. I, II and III
B. I only
C. II only
D. II and III only
E. I and III only
15. If $p(x)=2 m x^{2}-3 x$, for what value(s) of m would $p(-1)=g(f(2))$?
A. $m=-\frac{1}{2}$
B. $m=\frac{5}{2}$
C. $m=-2$
D. $m=2$
E. No value of m would make $p(-1)=g(f(2))$.
16. In the graph to the right, the dashed line graph represents $f(x)$ and the solid line graph is that of $g(x)$. At which of the following values of x is $f(x)>0$ and $f(x)<g(x)$?
I. $x=-3$
II. $x=-1$
III. $x=4.3$
A. II only
B. II and III only
C. III only
D. I and II only
E. I, II, and III

17. If the function $f(x)=|x-3|+|3-2 x|$ is rewritten without absolute value bars, what is the expression by which the function is defined for x values such that $x \leq \frac{3}{2}$?
A. $3 x+6$
B. $-3 x+6$
C. x
D. $3 x-6$
E. $-x$
18. If it is known that the point $(-2,-5)$ is a point on the graph of $y=f(x)$, then which of the following points must be on the graph of $y=f(x-1)+3$?
A. $(-3,-2)$
B. $(-1,-2)$
C. $(-3,-8)$
D. $(0,-2)$
E. $(-1,-8)$
19. If the function $f(x)$ is an odd function and the point $(-3,2)$ is on the graph, which of the following points must also be on the graph of $f(x)$?
A. $(3,-2)$
B. $(-3,-2)$
C. $(-3,3)$
D. $(3,2)$
E. $(2,-3)$
20. Which of the following functions is an even function?
I.

II.

III.

A. I only
B. II only
C. I and III only
D. II and III only
E. III only
21. The graph of $f(x)$ is the solid line graph and $g(x)$ is the dashed line graph pictured to the right. Which of the following statements is/are true?
I. $f(x)>0$ on the interval $(-3,0) \cup(0,6)$.
II. $g(x)<f(x)$ only on the open interval $(-2,5)$.
III. $f(g(3))-g(f(6))=3$
A. I and II only
B. III only
C. II only
D. I and III only
E. I, II, and III

22. The table of values to the right includes points that lie on the graph of $f(x)$, a continuous function on the interval $-4 \leq x \leq 4$. Which of the following statements is/are true?
I. $\quad f(x)$ is a one-to-one function.
II. $\quad f(f(f(2))=-1$.

x	$f(x)$
-4	3
-2	-1
-1	2
1	-2
2	1
4	-3

III. The graph of $f(x)$ exhibits origin, rotational symmetry.
A. I and III only
B. II and III only
C. I, II, and III
D. II only
E. I and II only
23. If $f(x)$ and $g(x)$ are inverse functions of each other and it is known that $f(3)=-5$, then which of the following function values must be true?
A. $f(-3)=-5$
B. $g(-3)=5$
C. $g(5)=-3$
D. $g(-5)=3$
E. None of these functions' values must be true.
24. Suppose that $f(x)=2 a x^{2}-3 x+2$. for what value of a is $f(-1)=3$?
A. $a=2$
B. $a=1$
C. $a=-1$
D. $a=3$
E. $a=4$
25. For which of the following functions does $F^{-1}(x)$ NOT exist?
I.

II.

III.

A. I only
B. II only
C. I and II only
D. II and III only
E. III only
26. Which of the following statements is/are true about the function $f(x)=2 x^{3}-5 x^{2}-4 x+12$?
I. $(x-2)$ is a factor of $f(x)$.
II. The graph of $f(x)$ crosses the x - axis at $x=2$.
III. $x=-\frac{3}{2}$ is a root of $f(x)$.
A. I and II only
B. I only
C. III only
D. I and III only
E. I, II, and III
27. What value of k makes the factor $(x-3)$ a factor of the function $f(x)=3 x^{3}-10 x^{2}+x+k$?
A. -6
B. 9
C. 174
D. -21
E. 6
28. If $(x+1)$ is a factor of $f(x)=3 x^{3}-11 x^{2}-6 x+8$, what is $f(x)$ written in completely factored form?
A. $f(x)=(x+1)(3 x-4)(x-2)$
B. $f(x)=(x+1)(3 x-2)(x-4)$
C. $f(x)=(x+1)(3 x-4)(x+2)$
D. $f(x)=(x+1)(3 x-2)(x+4)$
E. $f(x)=(x+1)(3 x+2)(x-4)$
29. Which of the following statements is false about the function to the right?
A. The multiplicity of the root $x=2$ is even.
B. The function graphed has odd degree.
C. As $x \rightarrow-\infty$, then $f(x) \rightarrow \infty$.
D. As $x \rightarrow \infty$, then $f(x) \rightarrow \infty$.
E. The domain and range of $f(x)$ are $(-\infty, \infty)$.

30. Given the graph of the function $g(x)$ pictured to the right, for what value(s) of x is $g(x)>0$?
A. $(-\infty,-1) \cup(2,5)$
B. $(-1,2)$
C. $(-\infty,-4) \cup(-4,-1) \cup(2,5)$
D. $(-\infty,-1] \cup[2,5]$
E. $x=-4$ and $[-1,2]$

31. Solve the polynomial inequality: $(x-2)^{2}(x+1)(x+3) \leq 0$
A. $(-\infty,-3) \cup(-1,2) \cup(2, \infty)$
B. $[-3,-1]$
C. $(-\infty,-3] \cup[-1, \infty)$
D. $[-3,-1]$ and $x=2$
E. $(-\infty,-3) \cup(-1, \infty)$

A table of values for a quartic polynomial function is shown below. Additionally, the function is such that there are only three distinct zeros, all of which are integer values.

x	-4	-2	-1	0	1	2	3	4
$p(x)$	108	-16	0	12	8	0	24	132

32. If c is the constant in the equation of $p(x)$, then which of the following is the value of c ?
A. $c=-1$
B. $c=12$
C. $c=2$
D. $c=9$
E. The value of c cannot be determined.
33. Which of the following statements is/are true about $p(x)$?
I. In factored form, $(x+3)$ is a factor of $p(x)$ one time.
II. $x=2$ is a zero whose multiplicity is 2 .
III. At least one of the zeros of $p(x)$ has a multiplicity of 3 .
A. I only
B. I and II only
C. II and III only
D. II only
E. III only
34. How many times is $(x-1)$ a factor of $g(x)=x^{4}-6 x^{2}+8 x-3$?
A. 3
B. 2
C. 1
D. 0
E. Cannot be determined

Unit 4 MULTIPLE CHOICE - Calculator Permitted

35. Which of the following statements is true about the graph of $P(x)$ pictured to the right?
A. $\quad P(x)$ is a quadratic function whose equation has a negative leading coefficient.
B. $P(x)$ is a quadratic function whose equation has a positive leading coefficient.
C. $P(x)$ is a quartic function whose equation has a negative leading coefficient.
D. $\quad P(x)$ is a quartic function whose equation has a positive leading coefficient.
E. $\quad P(x)$ is a cubic function whose equation has a negative leading coefficient.

36. If $f(x)=-3 x^{5}-3 x^{3}+2 x^{2}$, which of the following statements is true?
A. $x=0$ is not a root of $f(x)$.
B. $x=0$ is a root of $f(x) 1$ time.
C. $x=0$ is a root of $f(x) 2$ times.
D. $x=0$ is a root of $f(x) 3$ times.
E. $\quad x=0$ is a root of $f(x) 4$ times.
37. Which of the following statements is/are true about the polynomial function, $P(x)$?

$$
P(x)=-3 x^{5}-2 x^{4}+2 x^{2}-x+2
$$

I. As $x \rightarrow \infty, P(x) \rightarrow-\infty$.
II. All of the possible rational roots of $P(x)$ are $\pm 1, \pm 2, \pm \frac{1}{3}$.
III. There can be either 3 or 1 positive $\operatorname{root}(\mathrm{s})$ of $P(x)$.
A. I only
B. II and III only
C. I and II only
D. I, II, and III
E. I and III only
38. Which of the following is the correct combination of the types of roots for the function $g(x)=x^{4}-4 x^{3}-7 x^{2}-12$?
A.

Positive	Negative	Zero	Imaginary
3	1	0	0
1	3	0	0
2	2	0	0
1	1	0	2
0	0	0	4

39. The graph of the function $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ is pictured to the right. Which of the following is true?
A. The value of $a>0$.
B. The value of $a<0$.
C. The value of $e=1$.
D. Both A and C
E. Both B and C.

40. At which of the following values of x does the graph of $h(x)=-2 x^{4}-5 x^{3}+4 x^{2}+12 x$ have a point of inflection?
I. $x=0.063$
II. $x=-1.403$
III. $x=-2$
A. II and III only
B. I only
C. I and II only
D. I, II, and III only
E. Cannot be determined

The graph of a quartic function, $p(x)$, is pictured. Use the graph for questions 41 and 42 .

41. Which of the following conclusions can be made about $p(x)$.
A. The equation of $p(x)$ has an even number of sign changes.
B. The equation of $p(-x)$ has an odd number of sign changes.
C. The constant term, c, of $p(x)$ is such that $c>0$.
D. Both A and C are true.
E. Both B and C are true.
42. Which of the following can be concluded about the roots of $p(x)$?
A. $p(x)$ has one irrational root, one rational root, and two imaginary roots.
B. $p(x)$ has two real roots and two imaginary roots.
C. $p(x)$ has four imaginary roots.
D. $p(x)$ has four real roots.
E. None of these conclusions can be reached about $p(x)$.
43. It is known that a polynomial function, $f(x)$, has roots of $x=2$, which has multiplicity of 3 , and $x=2-i$. Minimally, what type of polynomial function is $f(x)$?
A. quadratic
B. cubic
C. quartic
D. quintic
E. linear
44. If any exist, find the coordinates of the point discontinuities of the rational function $H(x)=$ $\frac{(2 x+1)(x-2)(x+3)}{2 x^{2}+7 x+3}$
I. $(-3,-5)$
II. $\left(\frac{1}{2},-\frac{3}{2}\right)$
III. $\left(-\frac{1}{2},-\frac{5}{2}\right)$
A. I only
B. I and II only
C. II only
D. III only
E. I and III only
45. Which of the following is a non-canceling factor in the denominator of the function graphed to the right?
A. $(x-4)$
B. $(x+4)$
C. $(2 x+1)$
D. $(2 x-1)$
E. $(x+1)$

46. What, if one exists, is the equation of the slant asymptote of $f(x)=\frac{2 x^{2}-3 x+5}{x+3}$.
A. $y=2 x-3$
B. $y=2 x+1$
C. $y=1 / 2 x-3$
D. $y=2 x-9$
E. $f(x)$ does not have a slant asymptote.
47. Which of the following is the equation of the horizontal asymptote of $g(x)=\frac{5-2 x-6 x^{2}}{3 x^{2}-2 x}$?
A. $y=-2$
B. $y=\frac{5}{3}$
C. $y=3$
D. $y=0$
E. $g(x)$ does not have a horizontal asymptote.
48. A table of values for a rational function, $F(x)$, is given below. Which of the following statements is/are true about the function $F(x)$?

x	-2.01	-2.001	-2	-1.999	-1.99
$F(x)$	601	6001	Undefined	-5999	-599

I. The factor of $(x+2)$ is in both the numerator and denominator.
II. The graph of $F(x)$ has a vertical asymptote at $x=-2$.
III. The graph of $F(x)$ has a hole in the graph at $x=-2$.
A. I only
B. II only
C. I and II only
D. III only
E. I and III only
49. Which of the following functions is graphed to the right?
A. $f(x)=\frac{(x+1)(x-4)}{x-3}$
B. $f(x)=\frac{(x+1)(x-4)}{x+3}$
C. $f(x)=\frac{(x+1)(x-4)}{-2 x+6}$
D. $f(x)=\frac{(x-1)(x+4)}{x-3}$
E. $f(x)=\frac{(x+1)(x-4)}{2 x-6}$

The graphs of two rational functions, $G(x)$ and $H(x)$ are pictured below. Use the graphs to answer questions 50 and 51.

50. Which of the following statements is/are true?
A. The degree of the numerator of $G(x)$ is less than the degree of the denominator.
B. The degree of the numerator of $H(x)$ is equal to the degree of the denominator.
C. The equation of $H(x)$ has a cancelling factor of $(x+3)$.
D. Both A and C are true.
E. Both B and C are true.
51. Which of the following equations is the correct equation of the function $G(x)$?
A. $G(x)=\frac{(x+3)(x-1)}{-2(x+2)}$
B. $G(x)=\frac{(x-3)(x+1)}{x-2}$
C. $G(x)=\frac{(x+3)(x-1)}{-2(x-2)}$
D. $G(x)=\frac{(x-3)(x+1)}{-2(x+2)}$
E. $G(x)=\frac{(x+3)(x-1)}{x-2}$
52. Solve the rational inequality $\frac{3}{x-3} \leq \frac{2}{x^{2}-9}$.
A. $(-\infty,-3) \cup\left(-\frac{7}{3}, 3\right)$
B. $(-\infty,-3] \cup\left[-\frac{7}{3}, 3\right]$
C. $\left(-3,-\frac{7}{3}\right] \cup(3, \infty)$
D. $(-\infty,-3) \cup\left[-\frac{7}{3}, 3\right)$
E. $\left(-3,-\frac{7}{3}\right) \cup(3, \infty)$

