Unit 1	
1. C	Unit 4
2. B	35. C
2. B 3. E	36. C
5. E 4. A	30. C 37. E
	38. D
5. D	39. A
6. C	40. C
7. A	40. C 41. E
8. E	41. E 42. B
9. D	43. D
10. C	-3. D
10. C 11. D	
11. D 12. E	Unit 5
12. E 13. A	44. E
13. A 14. E	45. B
14. E 15. A	46. D
	47. A
16. B	48. B
	49. C
Unit 2	50. E
17. B	51. C
18. B	52. D
19. A	
20. C	
21. E	
22. B	
23. D	
24. C	
25. A	
Unit 3	
26. D	
27. E	
28. B	
29. C	
30. C	
31. D	
32. B	
33. B	
34. A	

Unit 1 MULTIPLE CHOICE No Calculator

- 1. The graph of a function h(x) is pictured to the right. If p(x) = -2|x-3|+3, then for what value(s) of x is the function p(x) = h(-5)?
 - A. x = 1 only B. x = -2 and 2 C. x = 2 and 4 D. x = -5 and 1 E. x = 1 and 5

- 2. The graph of a function f(x) is pictured to the right. Which of the following statements is/are true about the graph of f(x)?
 - I. The graph of f(x) is decreasing on the interval $(-2, \infty)$.
 - II. The value of f(x) = 5 for all values of x on the interval [-6, -2].
 - III. The domain of f(x) is $[-6, -2) \cup (-2, \infty)$.
 - A. I and III only
 - B. III only
 - C. II only
 - D. II and III only
 - E. I, II and III
- 3. The graph of f(x) is shown to the right. Which of the following intervals correctly identifies all values of *x* for which f(x) < 0?
 - A. $(-6, -4) \cup (0, \infty)$
 - B. $[-6, -4] \cup [0, \infty)$
 - C. $[-6, -4) \cup (0, 2) \cup (2, \infty)$
 - D. $(-6, -4) \cup [0, \infty)$
 - E. $(-6, -4) \cup (0, 2) \cup (2, \infty)$

- 4. Use the table of values to the right to determine the value of $[f(-2) + 2 \cdot g(2)]$.
 - A. 6
 - **B.** 10
 - C. 1
 - D. 3
 - E. -2

x	f(x)	g(x)
-2	-2	3
-1	2	3
2	0	4
3	-1	3

- 5. If $g(x) = \sqrt{x+3} 2$, for what value(s) of x is g(x) = 1?
 - A. x = 3 B. x = 0 C. x = 8

 D. x = 6 E. No value of x will make g(x) = 1.
- 6. Which of the following graphs is the graph of the function $g(x) = -(x+3)^3 + 2$?

E.

- 7. Suppose that $g(x) = (x 3)^2 5$. Which of the following statements is true if f(x) is the function pictured?
 - A. g(2) < f(3.5)
 - B. g(2) > f(3.5)
 - C. g(2) = f(3.5)
 - D. No comparison can be made because f(3.5) cannot be determined.
 - E. No comparison can be made because g(2) cannot be determined.

- 8. The graph of f(x) is the dashed line graph and g(x) is the solid line graph pictured. Which of the following best describes where the graph of $g(x) \le 0$?
 - A. [-5, -3] ∪ [6, 7]
 B. (-3, 0) ∪ (0, 6)
 - C. $(-5, -3] \cup [6, 7)$
 - D. [-3, 6]
 - E. $[-5, -3] \cup [6, 7]$ and x = 0
- 9. Consider the functions $f(x) = 2x^2 + 3x 2$ and g(x) = x 2. Find an equation for f(g(x)).
 - A. $f(g(x)) = x^2 8x + 4$ B. $f(g(x)) = 2x^3 - 4x^2 - 5x + 4$ C. $f(g(x)) = 2x^3 - x^2 - 8x + 4$ D. $f(g(x)) = 2x^2 - 5x$ E. None of these
- 10. Identify the domain of the function $g(x) = \frac{3-x}{x^2 x 20}$
 - A. $(-\infty, -4) \cup (-4, 3) \cup (3, 5) \cup (5, \infty)$ B. $(-\infty, 3) \cup (3, \infty)$ C. $(-\infty, -4) \cup (-4, 5) \cup (5, \infty)$ D. $(-\infty, \infty)$
 - E. The domain cannot be determined.

11. The graph of f(x) is shown to the right and $g(x) = \sqrt{2x - 1}$. What is the value of f(g(5))?

- A. 3
- B. 7
- C. 19
- D. –2
- E. Undefined

12. What is the domain of the function $f(x) = \sqrt{6-2x}$.

A.
$$(-\infty,3)\cup(3,\infty)$$
 B. $(-\infty,3)$
 C. $[3,\infty)$

 D. $(3,\infty)$
 E. $(-\infty,3]$

13. For what value of *a* would the function $g(x) = \begin{cases} ax - 3, x < -2 \\ x^2 - 2x, x > -2 \end{cases}$ have a point discontinuity at x = -2.

A. $a = -\frac{11}{2}$ B. $a = -\frac{3}{2}$ C. $a = -\frac{5}{2}$ D. $a = \frac{5}{2}$

E. No value of *a* will make the function have a point discontinuity at x = -2.

Use the graphs of f(x) and g(x) pictured below to answer questions 14 and 15.

- 14. Which of the following statements is/are true about the graphs of f(x) and g(x), pictured above?
 - I. g(x) is constant on the interval (-5, 1).
 - II. $f(x) \ge 0$ only on the interval (-3.5, 7).
 - III. g(x) > f(x) only on the interval [-5, 5).

A. I, II and III	B. I only	C. II only
D. II and III only	E. I and III only	

- 15. If $p(x) = 2mx^2 3x$, for what value(s) of *m* would p(-1) = g(f(2))?
 - A. $m = -\frac{1}{2}$ B. $m = \frac{5}{2}$ C. m = -2D. m = 2
 - E. No value of *m* would make p(-1) = g(f(2)).
- 16. In the graph to the right, the dashed line graph represents f(x) and the solid line graph is that of g(x). At which of the following values of x is f(x) > 0 and f(x) < g(x)?

A. II only	

- B. II and III only
- C. III only
- D. I and II only
- E. I, II, and III

Unit 2 MULTIPLE CHOICE Calculator Permitted

17. If the function f(x) = |x-3| + |3-2x| is rewritten without absolute value bars, what is the expression by which the function is defined for x values such that $x \le \frac{3}{2}$?

A. 3x + 6

- B. -3x + 6
- C. *x*
- D. 3x 6
- E. –*x*

- 18. If it is known that the point (-2, -5) is a point on the graph of y = f(x), then which of the following points must be on the graph of y = f(x 1) + 3?
 - A. (-3, -2)
 B. (-1, -2)
 C. (-3, -8)
 D. (0, -2)
 - E. (-1, -8)

- 19. If the function f(x) is an odd function and the point (-3, 2) is on the graph, which of the following points must also be on the graph of f(x)?
 - A. (3, -2)
 - B. (-3, -2)
 - C. (-3, 3)
 - D. (3, 2)
 - E. (2, -3)

20. Which of the following functions is an even function?

- E. III only
- 21. The graph of f(x) is the solid line graph and g(x) is the dashed line graph pictured to the right. Which of the following statements is/are true?

I. f(x) > 0 on the interval $(-3,0) \cup (0,6)$.

- II. g(x) < f(x) only on the open interval (-2, 5).
- III. f(g(3)) g(f(6)) = 3
- A. I and II only
- B. III only
- C. II only
- D. I and III only
- E. I, II, and III
- 22. The table of values to the right includes points that lie on the graph of f(x), a continuous function on the interval $-4 \le x \le 4$. Which of the following statements is/are true?
 - I. f(x) is a one-to-one function.
 - II. f(f(f(2)) = -1.
 - III. The graph of f(x) exhibits origin, rotational symmetry.
 - A. I and III only
 - B. II and III only
 - C. I, II, and III
 - D. II only
 - E. I and II only

x	f(x)
-4	3
-2	-1
-1	2
1	-2
2	1
4	-3

- 23. If f(x) and g(x) are inverse functions of each other and it is known that f(3) = -5, then which of the following function values must be true?
 - A. f(-3) = -5
 - B. g(-3) = 5
 - C. g(5) = -3
 - D. g(-5) = 3
 - E. None of these functions' values must be true.
- 24. Suppose that $f(x) = 2ax^2 3x + 2$. for what value of *a* is f(-1) = 3?
 - A. a = 2B. a = 1C. a = -1D. a = 3E. a = 4

25. For which of the following functions does $F^{-1}(x)$ NOT exist?

- A. I only
- B. II only
- C. I and II only
- D. II and III only
- E. III only

Unit 3 MULTIPLE CHOICE No Calculator

26. Which of the following statements is/are true about the function $f(x) = 2x^3 - 5x^2 - 4x + 12$?

- I. (x-2) is a factor of f(x).
- II. The graph of f(x) crosses the x axis at x = 2.

III.
$$x = -\frac{3}{2}$$
 is a root of $f(x)$.

A. I and II onlyB. I onlyC. III onlyD. I and III onlyE. I, II, and III

27. What value of k makes the factor (x - 3) a factor of the function $f(x) = 3x^3 - 10x^2 + x + k$?

A6	B. 9	C. 174
D. –21	E. 6	

28. If (x + 1) is a factor of $f(x) = 3x^3 - 11x^2 - 6x + 8$, what is f(x) written in completely factored form?

A. f(x) = (x + 1)(3x - 4)(x - 2)B. f(x) = (x + 1)(3x - 2)(x - 4)C. f(x) = (x + 1)(3x - 4)(x + 2)D. f(x) = (x + 1)(3x - 2)(x + 4)E. f(x) = (x + 1)(3x + 2)(x - 4)

- 29. Which of the following statements is false about the function to the right?
 - A. The multiplicity of the root x = 2 is even.
 - B. The function graphed has odd degree.
 - C. As $x \to -\infty$, then $f(x) \to \infty$.
 - D. As $x \to \infty$, then $f(x) \to \infty$.
 - E. The domain and range of f(x) are $(-\infty, \infty)$.

30. Given the graph of the function g(x) pictured to the right, for what value(s) of x is g(x) > 0?

A.
$$(-\infty, -1) \cup (2,5)$$

B. $(-1,2)$
C. $(-\infty, -4) \cup (-4, -1) \cup (2,5)$
D. $(-\infty, -1] \cup [2,5]$

E. x = -4 and [-1,2]

31. Solve the polynomial inequality: $(x-2)^2(x+1)(x+3) \le 0$

A. $(-\infty, -3) \cup (-1, 2) \cup (2, \infty)$ B. [-3, -1]C. $(-\infty, -3] \cup [-1, \infty)$ D. [-3, -1] and x = 2E. $(-\infty, -3) \cup (-1, \infty)$ A table of values for a quartic polynomial function is shown below. Additionally, the function is such that there are only three distinct zeros, all of which are integer values.

	x	-4	-2	-1	0	1	2	3	4
-	p(x)	108	-16	0	12	8	0	24	132

32. If *c* is the constant in the equation of p(x), then which of the following is the value of *c*?

A. $c = -1$	B. $c = 12$	C. $c = 2$

D. c = 9 E. The value of c cannot be determined.

33. Which of the following statements is/are true about p(x)?

- I. In factored form, (x + 3) is a factor of p(x) one time.
- II. x = 2 is a zero whose multiplicity is 2.

III. At least one of the zeros of p(x) has a multiplicity of 3.

A. I only	B. I and II only	C. II and III only
D. II only	E. III only	

34. How many times is (x - 1) a factor of $g(x) = x^4 - 6x^2 + 8x - 3$?

- A. 3
- B. 2
- C. 1
- D. 0
- E. Cannot be determined

Unit 4 MULTIPLE CHOICE - Calculator Permitted

- 35. Which of the following statements is true about the graph of P(x) pictured to the right?
 - A. P(x) is a quadratic function whose equation has a negative leading coefficient.
 - B. P(x) is a quadratic function whose equation has a positive leading coefficient.
 - C. P(x) is a quartic function whose equation has a negative leading coefficient.
 - D. P(x) is a quartic function whose equation has a positive leading coefficient.
 - E. P(x) is a cubic function whose equation has a negative leading coefficient.

- 36. If $f(x) = -3x^5 3x^3 + 2x^2$, which of the following statements is true?
 - A. x = 0 is not a root of f(x).
 - B. x = 0 is a root of f(x) 1 time.
 - C. x = 0 is a root of f(x) 2 times.
 - D. x = 0 is a root of f(x) 3 times.
 - E. x = 0 is a root of f(x) 4 times.

37. Which of the following statements is/are true about the polynomial function, P(x)?

 $P(x) = -3x^5 - 2x^4 + 2x^2 - x + 2$

- I. As $x \to \infty$, $P(x) \to -\infty$.
- II. All of the possible rational roots of P(x) are ± 1 , ± 2 , $\pm \frac{1}{3}$.
- III. There can be either 3 or 1 positive root(s) of P(x).

A. I only

- B. II and III only
- C. I and II only
- D. I, II, and III
- E. I and III only

	Positive	Negative	Zero	Imaginary
А.	3	1	0	0
В.	1	3	0	0
C.	2	2	0	0
D.	1	1	0	2
E.	0	0	0	4

38. Which of the following is the correct combination of the types of roots for the function $g(x) = x^4 - 4x^3 - 7x^2 - 12$?

39. The graph of the function $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ is pictured to the right. Which of the following is true?

- A. The value of a > 0.
- B. The value of a < 0.
- C. The value of e = 1.
- D. Both A and C
- E. Both B and C.

40. At which of the following values of x does the graph of $h(x) = -2x^4 - 5x^3 + 4x^2 + 12x$ have a point of inflection?

I. x = 0.063 II. x = -1.403 III. x = -2

- A. II and III only
- B. I only
- C. I and II only
- D. I, II, and III only
- E. Cannot be determined

The graph of a quartic function, p(x), is pictured. Use the graph for questions 41 and 42.

- 41. Which of the following conclusions can be made about p(x).
 - A. The equation of p(x) has an even number of sign changes.
 - B. The equation of p(-x) has an odd number of sign changes.
 - C. The constant term, *c*, of p(x) is such that c > 0.
 - D. Both A and C are true.
 - E. Both B and C are true.
- 42. Which of the following can be concluded about the roots of p(x)?
 - A. p(x) has one irrational root, one rational root, and two imaginary roots.
 - B. p(x) has two real roots and two imaginary roots.
 - C. p(x) has four imaginary roots.
 - D. p(x) has four real roots.
 - E. None of these conclusions can be reached about p(x).

- **43.** It is known that a polynomial function, f(x), has roots of x = 2, which has multiplicity of 3, and x = 2 i. Minimally, what type of polynomial function is f(x)?
 - A. quadratic
 - B. cubic
 - C. quartic
 - D. quintic
 - E. linear

Unit 5 MULTIPLE CHOICE – Calculator NOT Permitted

44. If any exist, find the coordinates of the point discontinuities of the rational function H(x) = $\frac{(2x+1)(x-2)(x+3)}{2x^2+7x+3}$

I.
$$(-3, -5)$$
 II. $\left(\frac{1}{2}, -\frac{3}{2}\right)$ III. $\left(-\frac{1}{2}, -\frac{5}{2}\right)$

- A. I only
- B. I and II only
- C. II only
- D. III only
- E. I and III only
- 45. Which of the following is a non-canceling factor in the denominator of the function graphed to the right?
 - A. (x-4) B. (x+4) C. (2x+1)
 - D. (2x-1) E. (x+1)

46. What, if one exists, is the equation of the slant asymptote of $f(x) =$	$\frac{2x^2-3x+5}{x+3}.$
---	--------------------------

- A. y = 2x 3B. y = 2x + 1C. $y = \frac{1}{2}x - 3$ D. y = 2x - 9
- E. f(x) does not have a slant asymptote.

47. Which of the following is the equation of the horizontal asymptote of $g(x) = \frac{5-2x-6x^2}{3x^2-2x}$?

- B. $y = \frac{5}{3}$ C. y = 3A. y = -2
- D. y = 0E. g(x) does not have a horizontal asymptote.

ΠĬ	ΤŤ	1		1	Ť	9	Ĩ	1	1	Т
			ļ. /							
		1		•	1 1	-	1 1			1
			<u></u>							
			1				1 1			
			<u> </u>							.l
		17		•		×.				
										J
		/		2.1		-	1			
	1									I
1							1 1		1	1
							1 1			
										1
				1 - 1		-				Ċ .,
		T 1			T 7	-	T T			1
							1			
			·	••••••••					<u></u>	
		1					1			1
				-		_	+1	-		Ļ
2 -11 -10		+	s -5 .		5		Ħ	-	4	ł
2 -11 -10	-9 -8	-7 -	5-5.	⊥ <u>1</u> -≷		1		-	4	-
2 -11 -10	-9 -8	-7 -	δ-δ.	₽ 	7	5.1		-	4 :	-
2 -11 -10	-9 -8	-7 -	δ- <u></u> δ	Ⅰ 		51		-	4	
2 -11 -10	-9 -8	-7 -	δ-δ			<u>}</u>		-	4 :	~
2 -11 -10	-9 -8	-7 -	5-5		Ĥ	3-1 -2 -2			4 :	-
2 -11 -10	-9 -8	-7 -	ð -5 ·	I	Ĥ	5-1 -2 -3		-	4 :	
2 -11 -10	-9 -8	-7 -	δ-5·	I	Ĥ	3-1		-	4 :	~
2 -11 -10	-9 -8	-7 -	δ-5·	1	Ĥ	51 -2 -3 -4			4 :	W
2 -11 -10	-9-8	-7 -	5-5	1 	Ĥ	51 -2 -3 -4			4 :	
2 - 1 - 0	-9 -8	-7 -	ð -ð ·	1	Ĥ	3 4 5			4 :	
2 - 1 - 10	-9 -8	-7 -	ð -ð ·	1 	Ĥ	3 3 4 5			4	
2 -11 -10	-9 -8	-7 -	ō -5 ·	1 	Ĥ	54 			4	
2 -11 -10	-9 -8	-7 -	\$-5	1 	Ĥ	34 34 34 34			4 :	
2 -11 -10		-7 -	5 -5 -	1 	Ĥ	2 2 4 4 5 5 5			4 :	
2 -11 -10		-7 -	8 -5 -	1 	Ĥ	1 2 3 4 5 5 5 7			4 :	
2 -11 -10		-7 -	5 -5 -	1 	Ĥ				4	

48. A table of values for a rational function, F(x), is given below. Which of the following statements is/are true about the function F(x)?

x	-2.01	-2.001	-2	-1.999	-1.99
F(x)	601	6001	Undefined	-5999	-599

I. The factor of (x + 2) is in both the numerator and denominator.

- II. The graph of F(x) has a vertical asymptote at x = -2.
- III. The graph of F(x) has a hole in the graph at x = -2.
- A. I onlyB. II onlyC. I and II onlyD. III onlyE. I and III only

49. Which of the following functions is graphed to the right?

A.
$$f(x) = \frac{(x+1)(x-4)}{x-3}$$
 B. $f(x) = \frac{(x+1)(x-4)}{x+3}$

C.
$$f(x) = \frac{(x+1)(x-4)}{-2x+6}$$
 D. $f(x) = \frac{(x-1)(x+4)}{x-3}$

E.
$$f(x) = \frac{(x+1)(x-4)}{2x-6}$$

The graphs of two rational functions, G(x) and H(x) are pictured below. Use the graphs to answer questions 50 and 51.

- 50. Which of the following statements is/are true?
 - A. The degree of the numerator of G(x) is less than the degree of the denominator.
 - B. The degree of the numerator of H(x) is equal to the degree of the denominator.
 - C. The equation of H(x) has a cancelling factor of (x + 3).
 - D. Both A and C are true.
 - E. Both B and C are true.
- 51. Which of the following equations is the correct equation of the function G(x)?

A.
$$G(x) = \frac{(x+3)(x-1)}{-2(x+2)}$$
 B. $G(x) = \frac{(x-3)(x+1)}{x-2}$ C. $G(x) = \frac{(x+3)(x-1)}{-2(x-2)}$

D.
$$G(x) = \frac{(x-3)(x+1)}{-2(x+2)}$$
 E. $G(x) = \frac{(x+3)(x-1)}{x-2}$

52. Solve the rational inequality $\frac{3}{x-3} \le \frac{2}{x^2-9}$.

A.
$$(-\infty, -3) \cup \left(-\frac{7}{3}, 3\right)$$

B. $(-\infty, -3] \cup \left[-\frac{7}{3}, 3\right]$
C. $\left(-3, -\frac{7}{3}\right] \cup (3, \infty)$
D. $\left(-\infty, -3\right) \cup \left[-\frac{7}{3}, 3\right)$
E. $\left(-3, -\frac{7}{3}\right) \cup (3, \infty)$