\qquad page 25

Test Review
FRO 1
Calculator NOT Permitted
Suppose that an angle, θ, in standard position is such that $\sin \theta=-\frac{3}{5}$ and that a separate angle, $\alpha=-\frac{4 \pi}{5}$ radians. Answer the following questions.
a. In what quadrants) could angle θ terminate? Explain your reasoning.

$$
\sin \theta=\frac{y}{r}=-\frac{3}{5}<0 \text {, so } \theta \text { terminates belau } x \text {-axis. tl }
$$

$\therefore \theta$ terminates in Quad III or IV +1
b. If angle θ is also such that $\sec \theta<0$, find the values of $\tan \theta$ and $\cot \theta$. Draw and label the reference triangle for θ. $\sec \theta=\frac{r}{x}<0 \therefore \theta$ terminates to the left of y-axis $\therefore \theta$ terminates in QUAD III.

$$
\tan \theta=\frac{y}{x}=\frac{-3}{-4}=\frac{3}{4}+1
$$

$$
\cot \theta=\frac{x}{y}=\frac{4}{3}
$$

c. In what quadrant does angle α terminate? Explain your reasoning.

$$
x=-\frac{4 \pi}{5}
$$

d. Find a positive co-terminal angle and the reference angle for angle α. Leave your answers in radian measure.

$$
\text { coterminal }=\frac{-4 \pi}{5}+\frac{10 \pi}{5}=\frac{6 \pi}{5}
$$

MULTIPLE CHOICE - Calculator Permitted

1. If $b=8$ and the measure of angle B is 35°, what is the value of c ?
A. 4.598
B. 6.553
C. 9.766
D. 11.425
$\sin \left(35^{\circ}\right)=\frac{8}{C}$
L. 13.948
$c=\frac{8}{\sin \left(35^{\circ}\right)}$

$$
c \approx 13.948
$$

2. Which of the following angles is co-terminal with the angle $\theta=-\frac{7 \pi}{4}$.
B. $\frac{3 \pi}{4}$
C. $\frac{19 \pi}{4}$
D. $\frac{11 \pi}{4}$
E. $\frac{7 \pi}{4}$

$$
\frac{17 \pi}{4}-\frac{8 \pi}{4} \Longrightarrow \frac{9 \pi}{4}-\frac{8 \pi}{4}=\frac{\pi}{4}
$$

3. Which of the following angles in degrees represents θ^{\prime}, th θ reference angle, for the angle, θ, which measures $-\frac{13 \pi}{6}$ radians?
A. -30°
B. -45°
$\frac{-13 \pi}{6}+\frac{12 \pi}{6}=\frac{1 \pi}{6} \Rightarrow-30^{\circ}$
C. -60°
D. 30°
E. 60°

4. Which of the following angles would terminate in Quadrant I?

5. Which of the following statements is/are true about the angle θ ?

Ref $=\theta-180^{\circ}$

f If

. If θ is such that $180^{\circ}<\theta<270^{\circ}$, then the reference angle would equal $\left(180^{\circ}-\theta\right)$.
\checkmark
II. If $\cos \overrightarrow{\theta<0}$, then the angle θ can terminate in either Quadrant II or Quadrant III. K
III. If $\sin \theta<0$ and $\tan \theta<0$, then the angle θ will terminate in Quadrant HI. IV

A. I only
B. II only
C. III only
D. I and II only
E. II and III only
6. Which of the following angles in radian measure is/are larger than 135° ?

$.883 \pi$
$.9375 \pi$
$135^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{3 \pi}{4}=.75 \pi$
A. II only
C. III only
D. II and III only
E. I only
7. Find two values of θ that satisfy $\csc \theta=1.22077$ on the interval $\left[0^{\circ}, 360^{\circ}\right)$.
A. 55° and 125°
B. 35° and 145°

$$
\int \sin \theta=\frac{1}{1.22077}
$$

C. 125° and 235°
D. 235° and 305°
E. 55° and 305°
$\theta=\sin ^{-1}\left(\frac{1}{1.22077}\right)$
$\theta=55^{\circ}$

FRO 2
Calculator Permitted
Consider the two angles, θ and α, to answer the questions that follow. The angle $\theta=-\frac{10 \pi}{3}$ and α is such that $\sin \alpha=-\frac{3}{7}$.
a. Express θ in terms of degree measure. Draw θ in standard degree position.

$$
(0)=\frac{-1087}{3} \cdot \frac{180^{\circ}}{\pi T}=-600^{\circ}
$$

b. What is the measure of θ^{\prime}, the reference angle of θ, expressed in radian measure.

$$
\theta^{\prime}=60^{\circ} \cdot \frac{\pi}{80^{\circ}}=\frac{\pi}{3}
$$

c. The angle θ is co-terminal with which angle on the unit circle? Using the correct coordinates, find the exact values of $\tan \theta$ and $\csc \theta$. Show your work.
θ is coterminal with $\frac{2 \pi}{3}$ or ant archie +1

$$
\begin{aligned}
& \tan \theta=\frac{y}{x}=\frac{\sqrt{3}}{-\frac{1}{2}}=\frac{\sqrt{3}}{-1}=-\sqrt{3} \\
& \csc \theta=\frac{r}{y}=\frac{1}{\frac{1}{2}} \frac{2}{2}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

d. If $\cos \alpha<0$, then which has a greater value $-\csc \theta$ or $\tan \alpha$. Show and explain the analysis that leads to your ti $\left\{\begin{array}{l}\text { answer. } \\ \sin \alpha=\frac{y}{r}=\frac{-3}{7}<0 \therefore \alpha \text { terminates belur } x \text {-axis. } \\ \cos \alpha=\frac{x}{r}<0 \quad \therefore \alpha \text { terminates left of } y \text { axis } \\ \therefore \alpha \text { terminates in QuAD III. }\end{array}\right.$

$$
\csc \theta=\frac{2 \sqrt{3}}{3} \approx 1.155
$$

$$
\tan \alpha=\frac{-3}{-2 \sqrt{10}}=\frac{3}{2 \sqrt{10}} \approx 0.474
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+(-3)^{2} & =(7)^{2} \\
x^{2}+9 & =49 \\
x^{2} & =40 \\
x & = \pm \sqrt{40} \\
x & =-2 \sqrt{10}
\end{aligned}
$$

Page 28
\qquad
FAQ 3
Calculator Permitted

Suppose an angle θ is such that $\sec \theta=-2.325$ and θ is such that $0<\theta \leq 2 \pi$.
a. If two angles have the same cosine value, what must be true about the reference angles of the two angles? From the unit circle, give an examples and explain your reasoning.

If two angles have the same cosine value, the angles must have the same reference angles and must terminate in QuAd I ad IV or Quits II and IIT.

$$
\alpha=\frac{\pi}{3} \text { and } B=\frac{5 \pi}{3} \quad \therefore \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \text { ad } \cos \left(\frac{5 \pi}{3}\right)=\frac{1}{2}
$$

b. In which quadrants) could θ terminate? Explain your reasoning.
$\sec \theta=-2.325=\frac{r}{x}<0 \quad \therefore \theta$ terminates left of y-axis $+1$
c. Using a calculator, solve the equation for θ and draw the angle your calculator gave you in standard position.

$$
\begin{aligned}
\cos \theta & =\frac{-1}{2.325} \\
\theta & =\cos ^{-1}\left(\frac{-1}{2.325}\right) \\
\theta & =2.015
\end{aligned}
$$

$$
\theta=\pi-1.127 \approx 2.014
$$

d. Find the other possible angle for θ that your calculator did not give you. Explain your method.

The other vesica of θ terminates in Quid III with a reference angle of 1.127 .

$$
\theta=\pi+1.127 \approx 4.269
$$

1. Using the coordinates on the unit circle, find the exact value of $\sin \frac{\pi}{3}$? $=\frac{Y}{r}$

A. $\frac{\sqrt{3}}{3}$
B. $\sqrt{3}$
C. $\frac{\sqrt{3}}{2}$
D. 1
E. $\frac{1}{2}$
2. Using the coordinates on the unit circle, find the exact value of $\sec \left(-\frac{3 \pi}{2}\right)$? $\frac{r}{X}$
A. 1
B. -1
C. 0
D. $\frac{\sqrt{2}}{2}$

3. Which of the following pairs of trigonometric ratios are equivalent.
I. $\sin \frac{\pi}{4}, \sin \frac{3 \pi}{4}$

B. I and III only
II. $\sin \frac{4 \pi}{3}, \sin \frac{5 \pi}{3}$
χ
III. $\sin \frac{5 \pi}{6}, \sin \frac{7 \pi}{6}$

C. III only
D. I only
E. I, II, and III only
4. In an oblique triangle, $\triangle A B C$, it is known that $a=6, b=8$, and $c=9$. Which of the following equations could be solved to determine $m \angle B$?
A. $6^{2}=9^{2}+8^{2}-2(9)(8) \cos B$
B. $8^{2}=9^{2}+6^{2}-2(9)(6) 96 n$
C. $9^{2}=6^{2}+8^{2}-2(6)(8) \cos B$
D. $6^{2}=8^{2}+9^{2}-2(8)(9)$ si, B
E. $8^{2}=9^{2}+6^{2}-2(9)(6) \cos B$
\qquad
5. Which of the following angles, θ, is/are such that $\cos \theta=-\frac{1}{2}$. $\quad x<0$
I. $\theta=\frac{4 \pi}{3}$
\checkmark
II. $\theta=\frac{2 \pi}{3}$
x
III. $\theta=-\frac{\pi}{3}$

Quad IV
6. Which of the following statements) is/are true about the six trigonometric ratios?
I. In quadrant IV, the sine and secant ratios are positive.
II. In quadrant III, the tangent and cotangent ratios are positive.
III. Sine and Cosine are the only trigonometric ratios that are positive in quadrant I. Tan,
A. I and II only
B. I only
C. I and III only
D. II only
E. I, II, and III

$$
\begin{array}{l|l}
(-, t) & (t, t) \\
\hline(-,-) & (t,-) \\
y>0 \quad x \& y \text { save signs }
\end{array}
$$

A. I and II only
B. II only
C. II and III only
D. III only
E. I, II, and III

7. An angle θ is such that $\csc \theta>0$ and $\tan \theta>0$, in which quadrant must the terminal side of θ lie?
A. Quadrant I
B. Quadrant II
C. Quadrant III
D. Quadrant IV
E. The terminal side of θ lies on an axis, not in a Quadrant.

