Calculator NOT Permitted

Review For Quiz 4

Consider the polynomial functions, $f(x)$ and $g(x)$, below to answer the following questions.

$$
f(x)=3 x^{3}-2 x^{2}+k x-3
$$

$$
g(x)=2 x^{3}-5 x^{2}-37 x+60
$$

a. When $f(x)$ is divided by $(x-5)$, the remainder is 4 . Find the value of k.

$$
\text { 5) } \begin{array}{cc}
3 & -2 \\
\hline & 15 \\
\hline & 13 \\
\text { (2) }
\end{array}
$$

$$
\begin{aligned}
5 k+322 & =4 \\
5 k & =-318 \\
k & =\frac{-318}{5}
\end{aligned}
$$

b. Find the value of k if $(x+3)$ is a factor of $f(x)$. Show your work.

(1) -3$]$

$$
\begin{array}{r}
-102=3 k \\
-34=k
\end{array}
$$

\qquad
c. The function, $g(x)$, has a zero of $x=-4$ that has a multiplicity of 1. Rewrite $g(x)$ in completely factored form.
${ }^{\circ} 0(x+4)$ is a factor

$$
g(x)=2 x^{3}-5 x^{2}-37 x+60
$$

d. Find the values) of x which make $g(x) \geq 0$. Show the number line sign analysis that leads to your solution.

$$
(x+4)(x-5)(2 x-3) \geq 0
$$

$$
g(x) \geq 0 \text { on }\left[-4, \frac{3}{3}\right] \cup[5, \infty)
$$

1. How many times is $(x-1)$ a factor of $g(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+1$?
A. 4
B. 3
C. 2
D. 1
E. 0
F. Cannot be determined

2. Which of the following statements is/are true about the function $f(x)=2 x^{3}+17 x^{2}+31 x-20$?

False I. $(x-4)$ is a factor of $f(x)$. F
True II. The graph of $f(x)$ crosses the $x-$ axis at $x=-5$. True III. $x=1 / 2$ is a root of $f(x)$.
A.
D. II and III only

B. I only

C. III only
E. I, II, and III

3. What value of k makes the factor $(x+3)$ a factor of the function $f(x)=x^{3}+2 x^{2}+19 x+k$?
A. 21
B. -66
D. -21
E. 66
C. 1
-3

$$
\begin{array}{r}
k-66=0 \\
k=66
\end{array}
$$

4. If $(x-2)$ is a factor of $f(x)=5 x^{3}+26 x^{2}-65 x-14$, what is $f(x)$ written in completely factored form?
A. $f(x)=(x-2)(5 x+1)(x+7)$
B. $f(x)=(x-2)(5 x-1)(x-7)$
B. $f(x)=(x-2)(5 x-1)(x-7)$
C. $f(x)=(x-2)(5 x-7)(x-1)$
D. $f(x)=(x-2)(5 x+1)(x-7)$
E. $f(x)=(x-2)(5 x-1)(x+7)$
$(x-2)$
$5 x^{2}+36 x+7$
$5 x^{2}+35 x+1 x+7$
$5 x(x+7)+1(x+7)$
$(x+7)(5 x+1)$

$$
5 x^{2}+35 x+1 x+7
$$

5. Which of the following statements is false about the function to the right?

A. P
he multiplicity of the root $x=-1$ is even. Fall se
B. The function graphed is odd degree. True
C. As $x \rightarrow-\infty$, then $f(x) \rightarrow \infty$. True
D. As $x \rightarrow \infty$, then $f(x) \rightarrow-\infty$. True
E. The domain and range of $f(x)$ are $(-\infty, \infty)$. True

6. Given the graph of the function $g(x)$ pictured to the right, for what value (s) of x is $g(x) \leq 0$?
A. $(-3,2) \cup(2, \infty)$
B. $(-\infty, \infty)$
C. $(-3, \infty)$
D. $x=2$ and $(-\infty,-3)$
E. $x=2$ and $(-\infty,-3]$

7. Solve the polynomial inequality: $(x-1)^{2}(x+1)(x-2)>0$
A. $(-\infty,-1) \cup(2, \infty)$
B. $(-\infty,-1] \cup[2, \infty)$
C. $(-1,2)$
D. $[-1,2]$
E. $(-\infty,-1] \cup[1,2]$

A table of values for a quartic polynomial function is shown below. Additionally, the function is such that there are only three distinct zeros, all of which are integer values.

8. If c is the constant in the equation of $p(x)$, then which of the following is the value of c ?
A. $c=-1$
B. $c=1$
C. $c=4$
D. $c=6$ y-int $=$ Constant E. The value of c cannot be determined.
9. Which of the following statements is/are true about $p(x)$?
I. In factored form, $(x-3)$ is a factor of $p(x)$ twice.
II. $x=-1$ is a zero whose multiplicity is 2 .
III. Two of the zeros of $p(x)$ has a multiplicity of 1 .
A. I only
B. I and II only
C. II and III only
D. II only

