Notes 1.5 Determining Domain and Range of a Function

Define **domain**:

Define range:

Domain: Range:

Domain: ___ Range:

Domain:

Range:

4.

Domain: Range:

5.

Domain:

Range:

6.

Range:

Determining Domain of a Function Analytically

	Constant Functions	Linear Functions	Absolute Value Functions $f(x) = a x - b + c$	Quadratic Functions	
	f(x) = c	f(x) = ax + b)(v) up 3 1 c	$f(x) = ax^2 + bx + c$	
	Sketch a general graph.	Sketch a general graph.	Sketch a general graph.	Sketch a general graph.	
	∠ Y=C }	Ь			
-	What is the domain?	What is the domain?	What is the domain?	What is the domain?	
	$(-\infty, \omega)$	$(-\infty,\infty)$	$(-\infty, \infty)$	$(-\infty,\infty)$	

Given below are the graphs of three different functions that we will investigate analytically. Refer to them as you complete the table below. Identify the domain of each function graphed below.

Name: RATIONAL	Name: SQUIRE ROOT	Name: Cube Root
$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$	$g(x) = \sqrt{5 - x}$	$h(x) = \sqrt[3]{x+3}$
3 -7 -5 -5 -4 -3 \ 2 -1		-0 -3 -7 -5 -5 -3 -2 -1 1 1 3 3 -2 -1 1 1 3 3 -3 -1 1 1 3 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 -3 -1 1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 3 3 3 -3 -1 1 3 3 3 -3 -1
Domain:	Domain:	Domain:
(-01-5)n(-519)n(5100)	(-0,5)	$(-\omega,\omega)$

Complete the table below as a precursor to determining the domain of each function analytically.

Function	Find the indicated function value.	Find the indicated function value.	What conclusions can you make about the domain of the function based on these two computations?
$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$	$f(-2) = \frac{(-2)^{2} + (-2)^{-6}}{(-2)^{2} - 4}$ $= \frac{4 - 8}{4 - 4}$	$f(-1) = \frac{(-1)^2 + (-1)^2}{(-1)^2 - 4}$ = 1 - 7	x=-2/5 not in the domain b/c when x=-2 there is not y-value.
	= -4 = undies	$= \frac{1-7}{1-4}$ $= \frac{-6}{-3} = 2$	re-1 is in the domain
$g(x) = \sqrt{5 - x}$	$g(-4) = \sqrt{5 - (-4)}$ $= \sqrt{9}$	$g(9) = \sqrt{5-(9)}$ $= \sqrt{-4}$	x=-4 is in the domain blc when x=-4, y=3
	= 3	= undies	x=q is not in domain volc when x = a there is no y-value
$h(x) = \sqrt[3]{x+3}$	$h(-11) = \sqrt[3]{-45}$	$h(5) = \sqrt[3]{(5)+3}$ = $\sqrt[3]{8}$	x=-11 and x=5 are in the domain
	こっろ	= 2	ble when x=-11, y=-2 and when X=5, y=2

Rational Functions

 $f(x) = \frac{g(x)}{h(x)}$

Based on your observations of f(x) in the table on page 46, what conclusion can you make about how to determine the domain of a rational function.

Name

The domain of a vational Function (5 (-0,0) EXCEPT for any x-values that make denominator=0

1.
$$f(x) = \frac{(2x-3)(x+2)}{(x-3)(x-1)}$$

2.
$$g(x) = \frac{3x+2}{x^2-9} = \frac{3x+2}{(x-3)(x+3)}$$
 3. $h(x) = \frac{x^2-x-2}{2x^2-5x-3} = \frac{(x-7)(x+3)}{(2x+1)(x-3)}$

3.
$$h(x) = \frac{x^2 - x - 2}{2x^2 - 5x - 3} = \frac{(x - 2)(x + 1)}{(2x + 1)(x - 2)}$$

Square Root Functions

Based on your observations of g(x) in the table on page 46, what conclusion can you make about how to determine the domain of a square root function.

 $f(x) = \sqrt{g(x)}$ RADI CAND The domain of a square root function will be the interval of x-values that makes RADICANDZO.

1.
$$f(x) = \sqrt{x+3}$$

RADICAMD 20 x +320 x 2-3

2.
$$g(x) = \sqrt{4 - 2x}$$

RADICAMP 20 4-2x20 -2x 2-4 x 62

3.
$$h(x) = \sqrt{3x+1}$$

RADICAND 20 3x +120

> 3x 2-1 x = -1/2

DOMaix

 Γ -3, \varnothing)

DOMAIN

1-0,0

DOMAIN

(-4, 00)

25

20				
Cubed Root Functions $f(x) = \sqrt[3]{g(x)}$ Based on y about how		vour observations of $h(x)$ in the table on page 46, what conclusion can you make to determine the domain of a cubed root function. domain of a cubed root function is $(-2/2)$ less the radicard is rational (Denom ± 0)		
$1. f(x) = \sqrt[3]{x - 3}$		$2. \ \ g(x) = \sqrt[3]{4 - 2x}$	3. $h(x) = \sqrt[3]{\frac{x-3}{2x+1}}$ $2x+1 \neq 0$ $2x \neq -1$ $x \neq -1/2$	
Domain (-2 xx)	<u>'</u>	Domain (-20 50)	Domain (-0,-1,) u (-1, 0)	