\qquad
Review 7 Day 2
FRQ 1: Calculator NOT Permitted
Pictured below is a table of values that represents the graph of an exponential function, $G(x)=a \cdot b^{c(x-h)}+k$ Use the table to answer the questions below.

x	-9	-5	-1	1	3	5	9
$G(x)$	-510	-30	0	1.5	1.875	1.969	1.998

a. Describe the behavior of $G(x)$ as $x \rightarrow-\infty$ and as $x \rightarrow \infty$ using the words increasing, decreasing, bounded or unbounded.

$$
\lim _{x \rightarrow-\infty} G(x)=-\infty \therefore \text { As } x \text { goes left, } G(x) \text { decrease without bound. }+1 / 2
$$

$\lim G(x)=2 \therefore$ As x goes r right, $G(x)$ increases with bound at $y=2^{+1 / 2}$ $x \rightarrow \infty$
b. Does $G(x)$ represent an exponential growth or decay? Give a reason for your answer.
$G(x)$ increases $\therefore G(x)$ represents exponential growth. $+1$
c. What is the value of k ? Explain your reasoning.
$\lim _{x \rightarrow \infty} G(x)=2 \therefore G(x)$ has a horizontal asymptote at $y=2$ $x \rightarrow \infty$

$$
\therefore \quad k=2
$$

d. What can be concluded about the value of a ? Explain your reasoning.

All the y-values of $G(x)$ are belau HA $y=2$ +1 $\therefore \quad a<0$ (1)
e. State the domain and range of $G(x)$.

$$
\begin{aligned}
& \text { Domain }(-\infty, \infty) \\
& \text { Range }(-\infty, 2)
\end{aligned}
$$

FRQ 2: Calculator NOT Permitted
The graph of an exponential function, $g(x)=a \cdot b^{c(x-h)}+k$, is pictured to the right. Use the graph to answer the following questions.
a. Describe the behavior of $g(x)$ as $x \rightarrow-\infty$ and as $x \rightarrow \infty$.

$$
\begin{array}{cc}
\lim _{x \rightarrow-\infty} g(x)=5 & \lim _{x \rightarrow \infty} g(x)=-\infty \\
+1 / 2 & +1 / 2
\end{array}
$$

b. Is $g(x)$ an exponential growth or decay? Explain your reasoning.
$g(x)$ is decreasing +1
$\therefore g(x)$ is exponential decay.
c. What is the value of k ? Explain your reasoning.
$g(x)$ has a horizontal asymptote at $y=5+1$

$$
\therefore k=5+1
$$

d. What can be concluded about the value of a ? Explain your reasoning. $g(x)$ is below the $H A .+1$

$$
\therefore a<0+1
$$

e. What can be concluded about the value of c ? Explain your reasoning.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} g(x)=-\infty+1 \\
& \therefore \quad c>0+1
\end{aligned}
$$

1. The graph of an exponential function, $f(x)=a(b)^{c(x-h)}+k$, is pictured to the right. Which of the following statements is/are true?
I. The range of $f(x)$ is $(4, \infty)$. $\operatorname{Fa}(\mathbb{\&},(-\infty, 4)$
II. The value of k is 4 . True, HA © $y=4$
III. The value of $a<0$. True, belem
A. I only
B. II only
C. III only

D. II and III only
E. I, II, and III
2. What is the range of the graph of the exponential function $f(x)=-(2)^{-(x+4)}+5$?
A. $(-\infty, 4)$
B. $(4, \infty)$

Ha (e) $y=5^{2}$
C. $(-\infty, 5)$
D. $(5, \infty)$
$a C O \therefore f$ is belie HA
E. None of these
3. Which of the following statements can be made about the graph of $G(x)=-(2)^{-x-7}-1$?
I. The graph of $G(x)$ has a horizontal asymptote at $y=7$. False, HA (2) $y=-1$
II. The function is an example of an exponential growth function. True,
III. The range of $G(x)$ is $(-1, \infty)$. Fa(\&
A. I only
B. II only
C. I and III only
D. III only
E. I, II and III
4. Completely simplify the following expression using the properties of exponents $\sqrt{\frac{b^{4 n+2} \cdot b^{n-3}}{b^{n-5}}} . \quad 2-3+5$
A. b^{n+2}

$$
\begin{aligned}
& =((4 n+2)+(n-3)-(n-5))^{1 / 2} \\
& =\left(b^{4 n+4}\right)^{1 / 2} \\
& =b^{2 n+2}
\end{aligned}
$$

D. $b^{2 n-7}$
E. $b^{\sqrt{2 n}+2}$
\qquad

The table of values below represent the graph of an exponential function, $H(x)=a \cdot b^{c x}+k$. Use the table to answer questions 5-6.

x	-7	-4	-1	2	5	8	11
$H(x)$	-125	-13	1	2.75	2.969	2.996	2.999

5. Which of the following statements is/are true?

I. Fall $x \rightarrow-\infty$, the graph of $H(x)$ increases without bound. decreases going left II. $\uparrow \sim_{\text {As }}^{\ell} x \rightarrow \infty$, the graph of $H(x)$ increases with bound.
III. $\uparrow \sim H(x)$ represents an exponential growth because the graph is increasing
A. I only
B. II only
C. I and II only
D. II and III only
E. I, II and III
6. Which of the following statements is/are true about the equation of $H(x)$?
I. The value of $c>$ false
 Tron
A. I and II only
B. II and III only
C. I only
II. The value of $k=3$.
III. The graph of $H(x)$ has a range of $(3, \infty)$.
D. II only
E. I, II and III
7. Which of the following are examples of exponential decay functions?
I.

A. III only
D. II and III only
II.

B. I and II only
E. I, II, and III
III.

C. I and III only
