\qquad
Review 7 Day 1
FRQ 1: Calculator Permitted

The graph of an exponential function, $g(x)=a \cdot b^{-(x-1)}+k$, shown above is such that $g(1)=3.5$. Use the graph to answer the questions that follow.
a. Determine if $g(x)$ is a growth or a decay function. Give a reason for your answer.
$g(x)$ is increasing
$\therefore g(x)$ is exponential growth.
b. Describe the behavior of $g(x)$ as $x \rightarrow-\infty$ and as $x \rightarrow \infty$ using the words increasing, decreasing, with bound and/or without bound.
$\lim _{x \rightarrow-\infty} g(x)=-\infty$ As x goes left, $g(x)$ decreases without bound. tl
$\lim _{x \rightarrow \infty} g(x)=4$ As x goes right, $g(x)$ increases with bound at $y=4$. ti
c. Find the values of a, b, and k and write the equation of $g(x)$. Show your work○explain your decision for each.

$$
\begin{aligned}
& \frac{(1,3.5), k=4+1}{g(x)}=a \cdot b^{-(x-1)}+4 \\
& 3.5=a \cdot b^{-(1-1)}+4 \\
& 3.5=a \cdot b^{-(0)}+4 \\
& 3.5=a \cdot b^{0}+4 \\
& 3.5=a \cdot 1+4 \\
& -0.5=a \\
& -\frac{1}{2}=a
\end{aligned}
$$

$$
\begin{aligned}
& (0,3), k=4, a=-\frac{1}{2} \\
& \hline g(x)=a \cdot b^{-(x-1)}+4 \\
& 3=-\frac{1}{2} \cdot b^{-(0-1)}+4 \\
& 3=-\frac{1}{2} \cdot b^{1}+4 \\
& -1=-\frac{1}{2} \cdot b \\
& 2=b
\end{aligned}
$$

$$
g(x)=\frac{-1}{3}(2)^{-(x)}+4
$$

d. Based on your equation found in part c), do the values of a and b analytically support your response in part a)? Explain your reasoning.
Since $b>1$ and $a<0$ and the coefficient of x is negative, $g(x)$ has a vertical and horimital reflection.
$\therefore g(x)$ has exponential granth and is below the $H A+1$

FRQ 2: Calculator Permitted
Consider the exponential function $f(x)=\left(\frac{1}{2}\right)^{x+3}-4$ to answer the following questions.
a. Classify the function as a growth or decay. Specifically justify each part of your reasoning based on the equation of $f(x)$.

$$
f(x)=2^{-(x+3)}-4
$$

$a>0 \therefore$ No vertical reflection
$c<0 \therefore$ There is a horizontal reflection

$$
\therefore f(x) \text { has } 1 \text { reflection }
$$

$\therefore f$ has exponential decay
b. Determine the range of $f(x)$ justifying your reasoning based on the equation.

$$
\begin{gathered}
a>0 \therefore f(\tau) \text { is above } 1+A \\
K=-4 \therefore 1+A \text { © } \because=-4 \\
\therefore \text { Range }(-4, \infty)
\end{gathered}
$$

\qquad
c. Sketch a graph of $f(x)$. Explain how a, c and the constant effect the parent graph of $y=(2)^{x}$.

$$
f(x)=2^{-(x+3)}-4
$$

(11) - $f(x)$ has a constr of $-4 \therefore f(x)$ hes $H A B y=-4$ +11 $\left\{\begin{array}{l}a>0 \therefore f \text { is above HA } \\ . c<0 \therefore f \text { goes toward } H A\end{array}\right.$

$$
\begin{aligned}
f(-3) & =2^{-(-3+3)}-4 \\
& =2^{-(0)}-4 \\
& =1 \cdot 4 \\
f(-3) & =-3
\end{aligned}
$$

d. Suppose that $g(x)=(2)^{x+1}-3$. Find all value (s) of x at which $f(x)=g(x)$. Interpret your solutions in the context of the graphs of $f(x)$ and $g(x)$.

$$
\begin{aligned}
& \begin{array}{l}
f(x)=g(x) \text { when graphs intersect +1) } \\
x \approx-3.272+1
\end{array} \\
& \begin{array}{l}
f(x)=g(x) \text { when graphs intersect +1) } \\
x \approx-3.272+1
\end{array} \\
& 2^{(-x-3)}-4
\end{aligned}
$$

MULTIPLE CHOICE - Calculator Permitted

1. The point $(3,8)$ is a point on the graph of an exponential function, $f(x)=(2)^{x}$. What is the point on the graph of $g(x)=-\left(\frac{1}{2}\right)^{x-4}-2$ that corresponds to the point $(3,8)$?
$g(x)=-(2)^{-(x-4)}-2$
A. $(3,-4)$
B. $(-1,-10)$
D. $(3,10)$
E. $(-3,-4)$
C. $(1,-10)$

$$
(x, y) \rightarrow(-x+4,-y-2)
$$

2. An exponential function, $f(x)=b^{c(x-h)}+k$, is pictured to the right. Which of the following statements is/are true?
I. The function is a growth function. Pal \mathbb{E}, decreasing
II. a <0. False, above $1+A$
III. The value of k is 4. True, HAC $y=4$
A. I, II and III
B. Lonly
C. III only
D. I and II only
E. I and III only

3. Solve the equation for x : $\frac{8^{2 x+4}}{4^{x-3}}=4^{x+5}$
A. $x=-4$
B. $x=4$

$$
\frac{2^{3(2 x+4)}}{2^{2(x-3)}}=2^{2(x+5)}
$$

C. $x=\frac{1}{4}$
D. $x=\frac{3}{4}$
$2^{3(2 x+4)-2(x-3)}=2^{2(x+5)}$
E. no solution

$$
\begin{aligned}
6 x+12-2 x+6 & =2 x+10 \\
4 x+18 & =2 x+10 \\
2 x & =-8 \\
x & =-4
\end{aligned}
$$

\qquad

The graph of an exponential function, $F(x)=a \cdot b^{c(x+1)}+k$ is pictured to the right. Use the graph to answer questions $4-6$.
4. Which of the following statements is/are true about the graph of the function.

$$
\text { nee. } 3=\text { neg }
$$

I. It can be concluded that the value of $a \cdot k>0$. $\mathrm{Fal} \&$
II. As $x \rightarrow \infty$, the graph of $F(x)$ decreases without bound. True
III. The graph of $F(x)$ is an example of an exponential decay function.

A. I only
B. II only
C. I and II only
D. III only

5. Which of the following statements is true about the values of a and c in the equation of $F(x)$?
A. The value of $a<0$ and the value of $c<0$.
B. The value of $a<0$ and the value of $c>0$.
C. The value of $a>0$ and the value of $c>0$.
D. The value of $a>0$ and the value of $c<0$.
E. The value of $a<0$ but no conclusion can be made about the value of c.
6. What is the value of b in the equation of the function $F(x)$?
A. $b=1$
B. $b=2$
C. $b=3$
D. $b=4$
E. $b=5$
7. Solve the exponential equation: $2^{x-4} \cdot 7^{x+3}=-5^{2 x-4}+6$
A. -0.483
B. -0.740
C. 0.483
D. 0.740
E. 6

