\qquad

Hz 9.1 Homework

Solve each of the following right triangles by finding all missing sides and angles. Show your work. Use a trigonometric ratio to find each missing piece of information.

1. $A=55^{\circ}$ and $c=16$

$$
m \angle B=90^{\circ}-55^{\circ}=35^{\circ}
$$

$\sin \left(55^{\circ}\right)=\frac{a}{16}$
$16 \sin \left(55^{\circ}\right)=a$
$13.106 \approx a$

$$
\begin{gathered}
\sin \left(35^{\circ}\right)=\frac{b}{16} \\
16 \cdot \sin \left(35^{\circ}\right)=b \\
9.177 \approx b
\end{gathered}
$$

3. $B=56^{\circ}$ and $c=63.1$
$m \angle A=90^{\circ}-56^{\circ}=34^{\circ}$

$$
\begin{array}{r}
\cos \left(34^{\circ}\right)=\frac{b}{63.1} \\
63.1 \cos \left(34^{\circ}\right)=b \\
52.312 \approx b
\end{array}
$$

$\cos \left(56^{\circ}\right)=\frac{a}{63.1}$
$63.1 \cdot \cos (56)=a$
$35.285 \approx a$
2. $a=9$ and $B=49^{\circ}$
$m \angle A=90^{\circ}-49^{\circ}=41^{\circ}$

$$
\begin{aligned}
\tan \left(49^{\circ}\right) & =\frac{b}{9} \\
9 \cdot \tan \left(49^{\circ}\right) & =b \\
10.353 & \approx b
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(49^{\circ}\right)=\frac{9}{c} \\
& c \cdot \cos \left(49^{\circ}\right)=9
\end{aligned}
$$

$$
c=\frac{9}{\cos \left(49^{\circ}\right)}
$$

$$
c \approx 13.718
$$

4. $c=12$ and $b=5$

$a^{2}+b^{2}$	$=c^{2}$
$a^{2}+(5)^{2}$	$=(12)^{2}$
$a^{2}+25$	$=144$
a^{2}	$=119$
a	$= \pm \sqrt{119}$
a	≈ 10.909

$\sin (B)=\frac{5}{12}$
$B=\sin ^{-1}\left(\frac{5}{12}\right)$
$B \approx 24.624^{\circ}$
5. A spotlight is mounted 7.3 meters high on a pole to illuminate the center of a parking area at point A. If A is 10.2 meters from the base of the pole, at what angle of depression, θ, should the spotlight be aimed?

$$
\tan _{n}(\theta)=\frac{7.3}{10.2}
$$

$0=\tan ^{-1}\left(\frac{7.3}{10.2}\right)$
c) $\approx 35.591^{\circ}$

The spot light's angle of depression shout
6. A30 foot ladder leaning against the side of a house makes a 70° an
a. How far up the side of the house does the ladder reach?

$$
\begin{gathered}
\sin \left(70^{\circ}\right)=\frac{y}{30} \\
30 \cdot \sin \left(70^{\circ}\right)=y \\
28.191 \approx y
\end{gathered}
$$

The ladder should reach 28. 191 feet high
b. What is the horizontal distance between the bottom of the ladder and the

$$
\begin{aligned}
& \text { house? } \\
& \cos \left(70^{\circ}\right)=\frac{x}{30}
\end{aligned}
$$

$30 \cdot \cos \left(70^{\circ}\right)=x$
$10.261 \approx x$
The horizontal distance between bottom of ladder and house is 10.261 feet.
Find the value of x in each of the following equations. Show your work.

$$
\begin{aligned}
& \text { 7. } \sec x=\frac{15}{11} \\
& \cos x=\frac{11}{15} \\
& x=\cos ^{-1}\left(\frac{11}{15}\right) \\
& x \approx 42.833^{\circ}
\end{aligned}
$$

8. $\cot x=\frac{2}{5}$

$$
\tan x=\frac{5}{2}
$$

$$
\begin{aligned}
& x=\tan ^{-1}(5 / 2) \\
& x \approx 68.199^{\circ}
\end{aligned}
$$

