\qquad

1. If $P(x)=\frac{(2 x-1)(x-5)}{(x-5)(x+1)}$, then which of the following statements is/are true?

Hole vA CB $x=-1$
Q $x=5$

1. The graph of $P(x)$ has a vertical asymptote at $x=5$. False $P(5)=\frac{2 \cdot 5-1}{5+1}$
$p(x)=\ldots \frac{(-1)(-5)}{(-5)(1)}$
II. The graph of $P(x)$ has a point discontinuity at $\left(5, \frac{9}{6}\right)$. True
III. The graph of $P(x)$ has a y-intercept at $(0,-1)$. True
A. I and II only
B. I and III only
C. II and III only
D. I only
E. I, II, and III

2. Identify the x-values) of any removable discontinuity in the function $f(x)=\frac{5 x^{2}-9 x-2}{x^{2}-4}$. $=\frac{(x-2)(5 x+1)}{(x-2)(x+2)}$

II. $x=-2$
III. $x=-\frac{1}{5}$

$$
\begin{gathered}
5 x^{2}-9 x-2 \\
5 x^{2}-10 x+x-2 \\
5 x(x-2)+1(x-3) \\
(x-2)(5 x+1)
\end{gathered}
$$

A. I only
B. II only
C. I and II only
D. I and III only
E. I, II and III
3. What does the graph of $f(x)=\frac{x^{2}-3 x}{x^{2}+2 x-15}$ look like at the value $x=3$?
A. There is a vertical asymptote at $x=3$.
B. There is a hole in the graph at $x=3$.

$$
f(x)=\frac{x(x-3)}{(x+5)(x-3)}
$$

C. There is a jump in the graph at $x=3$.
D. The graph is continuous at $x=3$.
4. Which of the following statements is/are true about the rational function $f(x)=\frac{(x-2)(x+5)(x-3)}{(x-2)(x-3)}$?
I. The graph of $f(x)$ has a hole in it at the point $(2,7)$. True
II. The graph of $f(x)$ has a vertical asymptote at $x=2$. $\quad \chi$
III. The graph of $f(x)$ will cross the x - axis at $x=2$ and $x=5$. χ
A. I only
B. I and II only
C. II only
D. II and III only
E. I, II and III

5. If it is known that $p(8)=0$, which of the following statements is true?
A. $(x+8)$ is a non-canceling factor in the numerator.
B. $(x+8)$ is a non-canceling factor in the denominator.
C. The ratio of the constant terms of the numerator and denominator is $\mathbf{- 3}$.
D. $(x-8)$ is a non-canceling factor in the numerator.
E. $(x-8)$ is a non-canceling factor in the denominator.
6. Which of the following statements is true about the function $f(x)=\frac{x^{2}-7 x+12}{x^{2}-25}$? $=\frac{(x-3)(x-4)}{(x-5)(x+5)}$
A. $f(x)$ has two values of x at which point discontinuities exist.
B. $f(x)$ has one point discontinuity and one infinite discontinuity.
C. $f(x)$ has one value of x at which a jump discontinuity exists.
D. $f(x)$ has two values of x at which infinite discontinuities exist.
E. $f(x)$ is continuous for all values of x.
\qquad
7. Which of the following factors is/are in the numerator of the equation of $f(x)$?
I. $(x-1)$
II. $(x+5)$
III. $(x-4)$
IV. $(x+2)$
A. I only
B. II only
C. I and II only
D. III only
E. III and IV only

8. Solve the rational inequality $\frac{4}{x-3} \leq \frac{2}{x-5} . \quad \begin{aligned} & (x-5) \frac{4}{(x-5)}-\frac{2}{x-3}-\frac{(x-3)}{x-5}(x-3) \leqslant 0\end{aligned}$
A. $(-\infty, 3) \cup(5,7)$
B. $(-\infty, 3) \cup(5,7]$
C. $(3,5] \cup(3, \infty)$
D. $(-\infty, 3) \cup(3,7)$
$\frac{4 x-20}{(x-5)(x-3)}-\frac{2 x-6}{(x-5)(x-3)} \leqslant 0$
E. $(3,5) \cup(7, \infty)$

$$
\begin{aligned}
& \frac{4 x-20-2 x+6}{(x-5)(x-3)} \leq 0 \\
& \frac{2 x-14}{(x-5)(x-3)} \leq 0 \\
& \frac{2(x-7)}{(x-5)(x-3)} \leq 0
\end{aligned}
$$

 NEG: POS , NEG: POS
$(-\infty, 3) \quad(5,7]$
I. The graph of a rational function, $H(x)$ is pictured to the right such that $H\left(-\frac{1}{3}\right)=0$. Use the graph to answer the following questions.
a. What factor is in the denominator that is not also in the numerator? Explain your reasoning.
$H(x)$ has a vertical asymptote at $x=3$.
$\therefore H(x)$ has a factor of $(x-3)$ in the denominator but it's not in the numerator.

b. What factor is in the denominator that is also in the numerator? Explain your reasoning. $H(x)$ has a hole at $x=-2$.
$\therefore H(x)$ has a factor of $(x+2)$ in both the denominator and the numerator.
c. What factor is in the numerator that is NOT in the denominator? Explain your reasoning.
$H(x)$ has a root at $x=-\frac{1}{3}$.
$\therefore H(x)$ has a factor of $(3 x+1)$ in the numerator but if's not in the denominator.
d. Construct the equation of $H(x)$ in standard form to find the coordinates of the y-intercept of the graph. Show your work.

$$
\begin{aligned}
& H(x)=\frac{(3 x+1)(x+2)}{(x-3)(x+2)} \\
& H(x)=\frac{3 x^{2}+7 x+2}{x^{2}-x-6} \\
& y \text {-int }=\frac{2}{-6}=-\frac{1}{3}
\end{aligned}
$$

