Name

Review FRQ

FREE RESPONSE

FRQ 1: Consider the function $h(x) = 4x^4 + 2x^3 - 6x^2 - 7x - 3$ to answer the following questions.

a. Find an equation for h(-x). Specifically explain what possibility about the roots of h(x) can be determined from this equation.

b. Use the graph of the function h(x). Then, determine how many of the roots are imaginary. Give a reason for your answer.

c. Make a complete list of the rational roots that are possible for h(x). Then, after comparing the list to the roots indicated in the graph, choose the two most probable rational roots.

d. Find all of the roots, real and/or imaginary, of h(x). Show all of your work and leave your answers in simplified, exact, complex form, if necessary.

$$-1 + 2 - 6 -7 -3$$

$$\frac{0 - 4 - 2 + 3}{4 - 2 - 4 - 3}$$

$$\frac{0 - 6 - 6 - 3}{4 - 2 - 4 - 3}$$

$$\frac{0 - 6 - 6 - 3}{4 - 4 - 3}$$

$$\frac{0 - 6 - 6 - 3}{4 - 3}$$

$$\frac{0 - 6 - 6 - 3}{4 - 3}$$

$$\frac{1}{4 - 2 - 2}$$

$$h(x) = (x + 1)(x - 3/2)(4x^{2} + 4x + 3)$$

$$h(x) = (x + 1)(x - 3/2)(2x^{2} + 2x + 1)$$

$$2x^{2}+2x+1=0$$

$Disc = b^2 - 4ac$	$x = \frac{-b \pm JDISC}{29}$
$= (2)^2 - u(2)(1)$	$= \frac{2 \pm \sqrt{-4}}{2(3)}$
= 4 - 8 Disc = -4	= -2 ± 20
	$\chi = -\frac{1+L}{2}$

Name

Calculator NOT Permitted

720							
x	-3	-2	0	1	3	4	
			ſ				
F(x)	50	16	-4	-2	-4	-20	

FRQ1 : The table above shows function values of <u>cubic</u> polynomial function, F(x). The function has two <u>distinct zeros</u>, x = a and x = b, such that a < 0 and b > 0. Additionally, one of the zeros has a multiplicity of two.

a. Determine the left and right hand behavior of F(x) based on the table of values. Give a reason for your answers.

when
$$\chi = -3$$
, $F(\chi) = 50$.
 $\therefore \lim_{x \to -\infty} F(\chi) = -\infty$
 $(\chi \to -\infty)$
 $(\chi \to -\infty)$

b. What can be said about the leading coefficient of F(x)? Justify your reasoning.

c. Between what two x – values in the table does the zero x = a lie? What is its multiplicity? Justify your reasoning.

d. Between what two x – values in the table does the zero x = b lie? What is its multiplicity? Justify your reasoning.

· fr) 20 on (0,0) +1	
. fix) is increasing on internal (0,1) and decreasing on (3,00 . fix) is tangant to the x-axis at x=b with even multiplicity :	17 +1
: fix) is tangant to the x-axis at x=b with even multiplicity.	2
where orbr3.	\mathcal{I}

Name Katculator NOT Permitted FACTOR co o. Theorem x-3) FRQ 2: A function, g(x), has a root of x = 2i and a root of x = 3, which has a multiplicity of 2.

a. Find an equation of g(x).

$$\frac{Complex \ Conjugate \ rout \ Hearen}{\chi = \pm 2} \qquad \frac{FACTOR \ Theorem}{(x-3)^2 = \chi^2 - 6x \pm 9}$$

$$\chi^2 = -9$$

$$\chi^2 \pm 9 = 0$$

$$g(x) = (\chi^{2} + 4) (\chi^{2} - 6\chi + 9)^{+1}$$

= $\chi^{4} - 6\chi^{3} + 9\chi^{2} + 4\chi^{2} - 24\chi + 36$
$$g(x) = \chi^{4} - 6\chi^{3} + 13\chi^{2} - 24\chi + 36 + 1$$

b. Determine the left- and right-hand behavior of g(x). Justify your reasoning.

g(x) is even degree with lead coefficient positive. I $\frac{1}{x} \lim_{x \to -\infty} g(x) = \infty \qquad \lim_{x \to -\infty} g(x) = \infty$ +1

c. A quartic function in the form $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ is such that the coefficients of the quadratic and linear terms are 10 and -18, respectively. Additionally, f(0) = 9 and x = 1 is a root of multiplicity of 2. What is the value of (a + b)?

•
$$\chi = 1$$
 is a root, \therefore $f(i) = a(i)^{4} + b(i)^{3} + [0(i)^{2} - 18(i) + 9 + 1]$
so $f(i) = 0$
 $0 = a + b + 1(0 - 18 + 9)$
 $0 = a + b + 1$
 $a + b = -1 + 1$

Name

2. Which of the following statements is true about the graph of P(x) pictured to the right?

- A. P(x) is a quadratic function whose equation has a negative leading coefficient.
- B. P(x) is a quadratic function whose equation has a positive leading coefficient.
- C. P(x) is a quartic function whose equation has a negative leading coefficient.
- D. P(x) is a quartic function whose equation has a positive leading coefficient.
- E. P(x) is a cubic function whose equation has a negative leading coefficient.

$$(x^{2}(-3x^{3}-3x+3))$$

- 3. If $f(x) = -3x^5 3x^3 + 2x^2$, which of the following statements is true?
 - A. x = 0 is not a root of f(x).

20

- B. x = 0 is a root of f(x) 1 time.
- C. x = 0 is a root of f(x) 2 times.
- D. x = 0 is a root of f(x) 3 times.
- E. x = 0 is a root of f(x) 4 times.
- 4. Which of the following statements is/are true about the polynomial function, P(x)?

 $p(x) = - - + - \tau$

- III.
- A. I only
- B. II and III only
- C. I and II only
- D. I, II, and III

E. I and III only

5. Which of the following is the correct combination of the types of roots for the function $q(x) = x^4 - 4x^3 - 7x^2 - 12?$

	Positive	Negative	Zero	Imaginary
Α.	3	1	0	0
В.	1	3	0	0
С.	2	2	0	0
D.	1	1	0	2
E.	0	0	0	4

6. The graph of the function $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ is pictured. Which of the following is true?

- B. The value of a < 0.
- C. The value of e = 1.
- D. Both A and C
- E. Both B and C.

7. At which of the following values of x does the graph of $h(x) = -2x^4 - 5x^3 + 4x^2 + 12x$ have an approximate point of inflection?

The graph of a quartic function, p(x), is pictured. Use the graph for questions 8 and 9.

- 8. Which of the following conclusions can be made about p(x).
 - A. The equation of p(x) has an even number of sign changes.
 - B. The equation of p(-x) has an odd number of sign changes.
 - C. The constant term, c, of p(x) is such that c > 0.
 - D. Both A and C are true.

E. Both B and C are true.

- 9. Which of the following can be concluded about the roots of p(x)?
 - A. p(x) has one irrational root, one rational root, and two imaginary roots.

B. p(x) has two real roots and two imaginary roots. $i \not \subset e(y)$

- C. p(x) has four imaginary roots.
- D. p(x) has four real roots.
- E. None of these conclusions can be reached about p(x).

Name

MULTIPLE CHOICE – Calculator Permitted Section

11. Find all of the roots, real and/or imaginary, of the function $f(x) = x^3 + 6x^2 + 12x + 7$.

12. Which of the following correctly describes the number of negative roots <u>possible</u> of the function $h(x) = 2x^4 + 3x^3 + 2x^2 - 2x - 3$ according to Descartes' Rule of Signs?

13. A quartic function has roots of x = 1, -3, and 2i. What is the equation of f(x)?

A.
$$f(x) = x^4 - 2x^3 + x^2 - 8x - 12$$

B. $f(x) = x^4 + 2x^3 - 7x^2 - 8x + 12$ $\chi^2 = -4$
C. $f(x) = x^3 - 2x + 3ix - 3$ $\chi^2 + 44 = 0$
D. $f(x) = x^4 - 2x^3 - 7x^2 + 8x - 12$
 $E = f(x) = x^4 + 2x^3 + x^2 + 8x - 12$
 $f(x) = x^4 + 2x^3 + x^2 + 8x - 12$
 $f(x) = x^4 + 2x^3 + x^2 + 8x - 12$

14. Find the value of k so that the binomial (x + 3) is a factor of the function $f(x) = x^3 + kx^2 - 5x - 6$.

- 15. For which of the following values of k does the function $g(x) = x^4 4x^2 + x + k$ have exactly two distinct real roots?
 - I. *k* = −2

II. *k* = 1

A. I and III only

24

- B. II only
- E. I only

C. III only

III. k = 3

16. The table of values below represents a cubic polynomial function, $F(x) = ax^3 + 2x^2 - 5x + b$, that has two negative roots and one positive root. Which of the following statements is/are true?

$(\chi + 3)$ $(\chi + 1)$										
	x	-5	-3	-2	-1	0	1	3	5	
	F(x)	-56	0	4	0	-6	-8	24	144	
x x b=-4 3 070										
I. The value of $a < 0$ and $b = -6$. False $b = -6$										
II. In factored form, the equation of $F(x)$ would contain the factor $(x + 3)$.										
III. The graph of $F(x)$ is tangent to the $x - axis$ at $x = -1$.										
A. I, II and III			B. I	B. I only C. I and II only						
D. II o	D. II only E. II and III only									

17. Which of the following statements is/are true about the quartic function, g(x), pictured?

- A. I only
- B. II only
- C. I and III only
- D. II and III only
- E. I and II only

18. If x = 3 is one root of the function $f(x) = x^3 - x^2 - 4x - 6$, what are the other two roots?

A.
$$x = 1 + i$$
 and $x = 1 - i$
B. $x = 1$ and -2
C. $x = -1 + i$ and $x = -1 - i$
D. $x = -1$ and -2
E. $x = -1 + 2i$ and $x = -1 - 2i$
 $x^2 + 2x + i = -2$ to complete square
 $x^2 + 2x + i = -2$ to $(x + i)^2 = -1$
 $x + i = \pm i$
 $x = -1 \pm i$

Name

19. The synthetic division of a polynomial function, q(x) is shown to the right. Which of the following conclusions can be made? $\begin{array}{c} 9(2) = -2 \\ -2 & 0 & 3 & 8 \\ 0 & -4 & -8 & -10 \end{array}$

- III. The graph of g(x) crosses the y axis at (0, 8). $\int r \, dq$
- A. I and III only B. III only C. I, II, and III D. II only E. II and III only
- 20. Which of the following is NOT a possible rational root of $g(x) = -2x^3 + 4x^2 2x 6$
 - C. 6 D. -3/2 $PRR = \frac{\pm 1, \pm 2, \pm 3, \pm 6}{\pm 1, \pm 2}$ D. $-\frac{3}{2}$ B. -3 E. -2
- 21. Which of the following could be the complete chart of possible types and numbers of the roots of

	\sim	\times	×		~~~~	Land Land	
A.	Positive	Negative	Imaginary	В.	Positive	Negative	Imaginary
	2	2	1		2	3	0
	2	0	3		2	1	2
	0	2	3		0	3	2
	0	0	5				
	 Image: A second s	~			1	/	 Image: A second s
C.	Positive	Negative	Imaginary	D. 🎾	Positive	Negative	Imaginary
	2	3	0		2	3	0
	2	1	2		2	1	2
		~ ~	- 3 - 2	3+2-3	0	3	2
	F(~x)	- 75 -	3×+21		0	1	4
		1	3	2	~	nore	npiek
					N N	(o)	MP

- 22. Which of the following statements is/are true about the function $f(x) = 2x^3 4x^2 + 10x 12$? The graph will fall to the left and rise to the right. イェルマ I. -31 There is a guaranteed zero on the interval -1 < x < 1. II. One zero of the function is x = -3. III. A. I and II only B. II and III only C. I only D. III only E. I, II, and III : 7(-1) = -24 (1) = -4
 - 23. Assuming that the function graphed below has no imaginary roots, which of the following statements is/are true about the function?

- I. The leading coefficient is negative.
- II. The graph of the function will have 3 points of inflection.
- III. The function has two roots that are positive, one of which has a multiplicity of 2. Figure \mathcal{C}

A. I and II only

B. III only

E. I, II, and III

C. II and III only

D. I and III only