\qquad

FRQ 1: Consider the function $h(x)=4 x^{4}+2 x^{3}-6 x^{2}-7 x-3$ to answer the following questions.
a. Find an equation for $h(-x)$. Specifically explain what possibility about the roots of $h(x)$ can be determined from this equation.

$$
h(-x)=4 x^{4}-2 x^{3}-6 x^{2}+7 x-3
$$

$h(-x)$ has 3 sigh changes. By Decartès Rale of Signs, $h(x)$ has 3 or 1 negative roots.
b. Use the graph of the function $h(x)$. Then, determine how many of the roots are imaginary. Give a reason for your answer.

c. Make a complete list of the rational roots that are possible for $h(x)$. Then, after comparing the list to the roots indicated in the graph, choose the two most probable rational roots.

d. Find all of the roots, real and/or imaginary, of $h(x)$. Show all of your work and leave your answers in simplified, exact, complex form, if necessary.

$2 x^{2}+2 x+1=0$

DISC	$=b^{2}-4 a C$			
	$=(2)^{2}-4(2)(1)$			
	$=4-8$			
DISC	$=-4$			$x=\frac{-b \pm \sqrt{D I S}}{29}$
---:	:---			
	$=\frac{-2 \pm \sqrt{-4}}{2(2)}$			
	$=\frac{-2 \pm 2 i}{4}$			
	$=\frac{-1 \pm i}{2}$			

Roots of $h(x)$: $-1,3 / 2, \frac{-1-i}{2}, \frac{-1+i}{2}$
\qquad
Calculator NOT Permitted

x	-3	-2	0	1	3	4
$F(x)$	50	16	-4	-2	-4	-20

FRQ1 : The table above shows function values of CubIc polynomial function, $F(x)$. The function has two distinct zeros, $x=a$ and $x=b$, such that $a<0$ and $b>0$. Additionally, one of the zeros has a multiplicity of two.
a. Determine the left and right hand behavior of $F(x)$ based on the table of values. Give a reason for your answers.
when $x=-3, F(x)=50$.
when $x=4, F(x)=-20$.

$$
\therefore \quad \lim _{x \rightarrow-\infty} F(x)=\infty
$$

$$
\therefore \lim _{x \rightarrow \infty} F(x)=-\infty
$$

b. What can be said about the leading coefficient of $F(x)$? Justify your reasoning.

- The graph of $F(x)$ falls to the right.
\therefore The leading coefficient is negative.
c. Between what two x - values in the table does the zero $x=a$ lie? What is its multiplicity? Justify your reasoning.
- $f(-2)=16$ and $f(0)=-4$
$\therefore f(x)$ change from + to - between $x=-2$ and $x=0$.
$\therefore f(x)$ crosses the x-axis between $x=-2$ and $x=0$. con vary greatly
$\therefore-2<a<0$ with "a" having ODD multiplicity of 1 ble $f(x)$ has two zeros so the odd multiplicity <3
d. Between what two x - values in the table does the zero $x=b$ lie? What is its multiplicity? Justify your reasoning.
- $f(x) \leq 0$ on $(0, \infty)+1$
- $f(x)$ is increasing on interval $(0,1)$ and decreasing on $(3, \infty)$)
$\therefore f(x)$ is tangent to the x-axis at $x=b$ with even multiplicity 2 where $0<b<3$.
\qquad

FRQ 2: A function, $g(x)$, has a root of $x=2 i$ and a root of $x=3$, which has a multiplicity of 2 .
a. Find an equation of $g(x)$.
$\frac{\text { Complex conjugate rout theorem }}{x= \pm 2 c}$

$$
\frac{\text { FACTOR Theorem }}{(x-3)^{2}=x^{2}-6 x+9}
$$

$$
\begin{aligned}
& x^{2}=-4 \\
& x^{2}+4=0
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\left(x^{2}+4\right)\left(x^{2}-6 x+9\right)+1 \\
& =x^{4}-6 x^{3}+9 x^{2}+4 x^{2}-24 x+36 \\
g(x) & =x^{4}-6 x^{3}+13 x^{2}-24 x+36+1
\end{aligned}
$$

b. Determine the left- and right-hand behavior of $g(x)$. Justify your reasoning.
$g(x)$ is even degree with lead coefficient positive.

c. A quartic function in the form $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ is such that the coefficients of the
$10 x^{2}$ quadratic and linear terms are 10 and -18 , respectively. Additionally, $f(0)=9$ and $x=1$ is a root of multiplicity of 2 . What is the value of $(a+b)$?

- $f(0)=9 \quad \therefore \quad e=a \Rightarrow f(x)=a x^{4}+b x^{3}+10 x^{2}-18 x+9$
- $x=1$ is a root, $\therefore f(1)=a(1)^{4}+b(1)^{3}+10(1)^{2}-18(1)+9$
so $f(1)=0$

$$
0=a+b+10-18+a
$$

$$
\begin{align*}
& 0=a+b+1 \\
& a+b=-1
\end{align*}
$$

\qquad

Review

MULTIPLE CHOICE - Calculator Permitted

1. It is known that a polynomial function, $f(x)$, has roots of $x=2$, which has multiplicity of 3 , and $x=2-i$. Minimally, what type of polynomial function is $f(x)$?
A. quadratic

$$
2+3=5
$$

B. cubic
C. quartic
D. quintic
E. linear
2. Which of the following statements is true about the graph of $P(x)$ pictured to the right?

A. $P(x)$ is a quadratic function whose equation has a negative leading coefficient.
B. $P(x)$ is a quadratic function whose equation has a positive leading coefficient.
C. $P(x)$ is a quartic function whose equation has a negative leading coefficient.
D. $P(x)$ is a quartic function whose equation has a positive leading coefficient.
E. $\quad P(x)$ is a cubic function whose equation has a negative leading coefficient.
3. If $f(x)=-3 x^{5}-3 x^{3}+2 x^{2}$, which of the following statements is true?
A. $x=0$ is not a root of $f(x)$.
B. $x=0$ is a root of $f(x) 1$ time.
C. $x=0$ is a root of $f(x) 2$ times.
D. $x=0$ is a root of $f(x) 3$ times.
E. $x=0$ is a root of $f(x) 4$ times.
4. Which of the following statements is/are true about the polynomial function, $P(x)$?

A. I only

$$
p(x)=--\underbrace{+}_{2}+4
$$

C. I and II only
D. I, II, and III

E. I and III only

5. Which of the following is the correct combination of the types of roots for the function $g(x)=x^{4}-4 x^{3}-7 x^{2}-12$?
A.
B.
C.
D.
E.

Positive	Negative	Zero	Imaginary
3	1	0	0
1	3	0	0
2	2	0	0
1	1	0	2
0	0	0	4

6. The graph of the function $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ is pictured. Which of the following is true?
A. The value of $a>0$.
B. The value of $a<0$.
C. The value of $e=1$.
D. Both A and C
E. Both B and C.

7. At which of the following values of x does the graph of $h(x)=-2 x^{4}-5 x^{3}+4 x^{2}+12 x$ have an approximate point of inflection?
$x=\frac{-.806+.931}{2}$ I. $x=0.063$
$x=\frac{-2+-.806}{2}$
A. II and III only
B. I only

C. I and II only

D. I, II, and III only
E. Cannot be determined
II. $x=-1.403^{2}$
III. $x=-2$

The graph of a quartic function, $p(x)$, is pictured. Use the graph for questions 8 and 9 .

8. Which of the following conclusions can be made about $p(x)$.
A. The equation of $p(x)$ has an even number of sign changes.
B. The equation of $p(-x)$ has an odd number of sign changes.
C. The constant term, c, of $p(x)$ is such that $c>0$.
D. Both A and C are true.
E. Both B and C are true.
9. Which of the following can be concluded about the roots of $p(x)$?
A. $p(x)$ has one irrational root, one rational root, and two imaginary roots.
B. $p(x)$ has two real roots and two imaginary roots. Jikely
C. $p(x)$ has four imaginary roots.
D. $p(x)$ has four real roots.
E. None of these conclusions can be reached about $p(x)$.
\qquad

MULTIPLE CHOICE - Calculator Permitted Section

10. Pictured to the right is the graph of the function $g(x)=a x^{4}+4 x^{3}-3 x^{2}-4 x+b$. Which of the following statements is/are true?
11. The value of $a>0$. $\operatorname{Fal}(\mathbb{S}$
II. The factor $(x-2)$ is a factor of $g(x)$ twice.
III. The value of b in the equation is 4
A. II only
B. I and II only
C. I and III only
D. II and III only
E. III only

12. Find all of the roots, real and/or imaginary, of the function $f(x)=x^{3}+6 x^{2}+12 x+7$.

E. Roots cannot be determined
A. $x=-1,7$
B. $x=-1, \frac{-5 \pm i \sqrt{3}}{2}$

15710
C. $x=-1, \frac{-2 \sqrt{2}}{2}$
D. $x=-1, \frac{-5 \pm \sqrt{3}}{2}$ $x^{2}+5 x+7=0$
$x=\frac{-5 \pm \sqrt{-3}}{\partial(1)}$
12. Which of the following correctly describes the number of negative roots possible of the function $h(x)=2 \mathrm{x}^{4}+3 \mathrm{x}^{3}+2 \mathrm{x}^{2}-2 \mathrm{x}-3$ according to Descartes' Rule of Signs?
$h(-x)=\frac{2 x^{4}-3 x^{3}+2 x^{2}}{2}+\frac{2 x-3}{3}$
A. 3 or 1
B. 2 or 0
C. Only 1
D. 4,2 , or 0
E. Only 2
13. A quartic function has roots of $x=1,-3$, and $2 i$. What is the equation of $f(x)$?
A. $f(x)=x^{4}-2 x^{3}+x^{2}-8 x-12$
B. $f(x)=x^{4}+2 x^{3}-7 x^{2}-8 x+12 \quad x^{2}=-4$
C. $f(x)=x^{3}-2 x+3 i x-3$

$$
\begin{array}{l|l}
x= \pm 2 i & f(x) \\
x^{2}=-4 \\
x^{2}+4=0 & \\
& =(x-1)(x+3)\left(x^{2}+2 x-3\right)\left(x^{2}+4\right) \\
& =x^{4}+2 x^{3}-3 x^{2}+4 x^{2}+8 x-12 \\
f(x) & =x^{4}+2 x^{3}+x^{2}+8 x-12
\end{array}
$$

D. $f(x)=x^{4}-2 x^{3}-7 x^{2}+8 x-12$
E
E. $f(x)=x^{4}+2 x^{3}+x^{2}+8 x-12$

14. Find the value of k so that the binomial $(x+3)$ is a factor of the function $f(x)=x^{3}+k x^{2}-5 x-6$.
A. 2
B. -3
C. -2
D. $\frac{2}{3}$
E. None of these

16. The table of values below represents a cubic polynomial function, $F(x)=\mathrm{ax}^{3}+2 \mathrm{x}^{2}-5 \mathrm{x}+\mathrm{b}$, that has two negative roots and one positive root Which of the following statements is/are true?

x	-5	-3	-2	-1	0	1	3	5
$F(x)$	-56	0	4	0	-6	-8	24	144
$b=-6$								

$a>0$
I. The value of $a<0$ and $b=-6$. Fal\&
II. In factored form, the equation of $F(x)$ would contain the factor $(x+3)$.
III. The graph of $F(x)$ is tangent to the x - axis at $x=-1$. crosses
A. I, II and III
B. I only
C. I and II only
D. II only
E. II and III only

MULTIPLE CHOICE - Calculator NOT Permitted Section

17. Which of the following statements is/are true about the quartic function, $g(x)$, pictured?

I. The graph has one positive root that has a multiplicity of 2 . Fall \&
II. The leading coefficient of the equation of $g(x)$ is positive. True
III. All of the roots of $g(x)$ are real. True
A. I only
B. II only
C. I and III only
D. II and III only
E. I and II only
18. If $x=3$ is one root of the function $f(x)=x^{3}-x^{2}-4 x-6$, what are the other two roots?
A. $x=1+i$ and $x=1-i$
B. $x=1$ and -2
C. $x=-1+i$ and $x=-1-i$
D. $x=-1$ and -2
E. $x=-1+2 i$ and $x=-1-2 i$

$$
\begin{aligned}
& \text { 3) } \begin{array}{rrrr}
1 & -1 & -4 & -6 \\
& 3 & 6 & 6
\end{array} \\
& x^{2}+2 x+2=0 \\
& x^{2}+2 x+1=-2+1^{0} \\
& (x+1)^{2}=-1 \\
& x+1= \pm i \\
& x=-1 \pm i
\end{aligned}
$$

19. The synthetic division of a polynomial function, $g(x)$ is shown to the right. Which of the following conclusions can be made?

$$
x \operatorname{Des}=3
$$

I. $g(x)$ is a quartic function. False

A. I and III only
B. III only
C. I, II, and III
D. II only
E. II and III only
20. Which of the following is NOT a possible rational root of $g(x)=-2 x^{3}+4 x^{2}-2 x-6$
A. $-2 / 3$
B. -3
C. 6
D. $-3 / 2$
E. -2

$$
P R R=\frac{ \pm 1, \pm 2, \pm 3, \pm 6}{ \pm 1, \pm 2}
$$

21. Which of the following could be the complete chart of possible types and numbers of the roots of the function $F(x)=-2 x^{5}+3 x^{3}+2 x^{2}-x-3$?

A.

Positive	Negative	Imaginary
2	2	1
2	0	3
0	2	3
0	0	5

B.

Positive	Negative	Imaginary
2	3	0
2	1	2
0	3	2

C. \quad| Positive | Negative | Imaginary |
| :---: | :---: | :---: |
| 2 | 3 | 0 |
| 2 | 1 | 2 |

$$
F(-x)=2 x^{5}-3 x^{3}+2 x^{2}+x-3
$$

D. D

Positive	Negative	Imaginary
2	3	0
2	1	2
0	3	2
0	1	4

22. Which of the following statements is/are true about the function $f(x)=2 x^{3}-4 x^{2}+10 x-12$?
I. The graph will fall to the left and rise to the right. True
$\begin{array}{llllllll}\text { II. There is a guaranteed zero on the interval }-1<x<1 . & -3 & 2 & -4 & 10 & -12 \\ & & & -6 & 30 & -120 \\ \text { III. } & \text { One zero of the function is } x=-3 . & x & 2 & -60 & 40 & (-132\end{array}$
A. I and II only
B. II and III only
C. I only
D. III only
E. I, II, and III

$f(1)$ if $f(-1)$ are same
sign. Cant guarantee a zero between them.
23. Assuming that the function graphed below has no imaginary roots, which of the following statements is/are true about the function?

I. The leading coefficient is negative. True
II. The graph of the function will have 3 points of inflection. True
III. The function has two roots that are positive, one of which has a multiplicity of 2. Fall Se
A. I and II only
B. III only
C. II and III only
D. I and III only
E. I, II, and III
