Homework 4.4 Calculator Permitted

FRQ 1. Consider the function $f(x)=9 x^{4}+21 x^{3}+7 x^{2}+x-2$ to answer the following questions.
a. Find $f(-2.5)$ and $f(-1.5)$.

What do these values suggest about the graph of $f(x)$ on the interval $-2.5<x<-1.5$?
$\left.\begin{array}{l}f(-2.5)=62.688 \\ f(-1.5)=-13.06\end{array}\right\}+1$
$f(-2.5)>0$ and $f(-1.5)<0$.
$\therefore f(x)$ changes signs between $x=-2.5$ and $x=-1.5\}+1$
$\therefore f(x)$ has a root between $x=-2.5$ and $x=-1.5$
b. Use Descartes' Rule of Signs to determine the number of possible positive, negative, zero, and imaginary roots of $f(x)$. Make a chart that summarizes your results. Then, after investigating the graph of $f(x)$, which of the combinations from the table is correct and explain why.

$$
\begin{aligned}
& f(x)=9 x^{4}+21 x^{3}+7 x^{2}+x-2 \\
& f(-x)=9 x^{4}-21 x^{3}+7 x^{2}-x-2 \\
& \begin{array}{l}
\text { t }=1 \\
-\quad=30 r 1 \\
\operatorname{zero}=0 \\
i
\end{array} \quad \begin{array}{llll}
1 & 3 & 0 & 0 \\
1 & 1 & 0 & 2 \\
t 1
\end{array}
\end{aligned}
$$

c. What are all of the possible rational roots of $f(x)$? Of these possible roots, which two appear to be the most likely possible roots?

$$
\begin{aligned}
& \text { FR }=\frac{ \pm 1, \pm 2}{ \pm 1, \pm 3, \pm 9} \\
& \text { APR }=-2, \frac{1}{3}
\end{aligned}
$$

d. Find the roots of $f(x)$, real and/or imaginary. Show all of your work.

$$
\begin{array}{rlr}
3 x^{2}+2 x+1=0 \\
\begin{aligned}
\text { DiSC } & =b^{2}-4 a c \\
& =(2)^{2}-4(3)(1) \\
& =4-12 \\
\text { DISC } & =-8
\end{aligned} & \begin{aligned}
& \\
& x=\frac{-b \pm \sqrt{D i S C}}{2 a} \\
& 2(3) \\
& x=\frac{-2 \pm 2 i \sqrt{2}}{6} \\
&\left.x=\frac{-1 \pm i \sqrt{2}}{3}\right\}
\end{aligned}
\end{array}
$$

\qquad
Calculator NOT Permitted
FRQ 2. Pictured below are graphs of two different polynomial functions. All of the zeros of each function are real-none are imaginary. Answer the questions that follow about the two graphs, $f(x)$ and $g(x)$.

Graph of $f(x)$

Graph of $g(x)$

a. Based on the graphs, what types of polynomial functions are $f(x)$ and $g(x)$? Explain your reasoning.
$+1 f(x)$ and $g(x)$ have no imaginary roots. By the FTA, the degree of $f(x)$ and $g(x)$ will be the sum of the multiplicities of the roots.
$+1$

- $f(x)$ is tangent to the negative x-axis.
$\therefore f(x)$ has a root multiplicity ≥ 2.
- $f(x)$ crosses the x-axi stwice ilo chaney concavity $\therefore f(x)$ has two roots of mull $=1$ $+1 / 2 \therefore f(x)$ is even degree ≥ 4.
$g(x)$ cross the x-axis 3 times wo changing concenter.
$\therefore g(x)$ has 3 roots of mut $=1$.
$\therefore g(x)$ is cubic. $+1 / 2$
b. What can be concluded about the value of a, if a is the leading coefficient in the equation of $g(x)$? Explain your reasoning.

$$
\left.\begin{array}{l}
\lim _{x \rightarrow-\infty} g(x)=\infty \\
\lim _{x \rightarrow \infty} g(x)=-\infty
\end{array}\right\} \therefore g(x) 15 \text { odd degree with a }<0
$$

c. How many points of inflection does the graph of $f(x)$ have? Give a reason for your answer.

- $f(x)$ has 2 pairs of consecutive extrema.
- Points of inflection occur about halfway between consecutive extrema. $\therefore f(x)$ has 2 points of inflection.
d. If d represents the constant term in the equation of $g(x)$, what can be concluded about the value of d ? Explain your reasoning.
$g(x)$ crosses the x-axis at the origin.
$\therefore g(x)$ has a factor of X.
$\therefore g(x)$'s constant term $d=0$.

