\qquad

Homework 4.3

For exercises $1-4$, list the possible rational roots of the given function. Then, find all roots, real and/or imaginary, of the function. Leave all answers in lowest terms and exact form.

3. $h(x)=3 x^{4}-8 x^{3}-12 x^{2}+24 x+9$

$$
\begin{array}{lr}
\text { MR }=\frac{ \pm 1, \pm 3, \pm 9}{ \pm 1, \pm 3} & h(x)=(x-3)\left(x+\frac{1}{3}\right)\left(3 x^{2}-9\right) \\
3 x^{2}-9=0 \\
3 x^{2}=9 \\
\text { APR }=-\frac{1}{3}, 3 & x^{2}=3 \\
& x= \pm \sqrt{3}
\end{array}
$$

3	3	-8	-12	24	9
	0	9	3	-27	-9
$-\frac{1}{3}$	3	1	-9	-3	10

$$
\text { Roots: }-\frac{1}{3}, 3,-\sqrt{3}, \sqrt{3}
$$

4. $g(x)=3 x^{3}-2 x^{2}+5 x+2$

$$
\left.\begin{array}{l}
g(x)=\left(x+\frac{1}{3}\right)\left(3 x^{2}-3 x+6\right)=0 \\
g(x)=\left(x+\frac{1}{3}\right) 3\left(x^{2}-x+2\right) \\
\\
x
\end{array}\right)
$$

Roots: $-\frac{1}{3}, \frac{1-i \sqrt{7}}{2}, \frac{1+i \sqrt{7}}{2}$

The graph of a quintic polynomial function, $p(x)$, is shown to the right. Use the graph to answer questions $5-8$.
5. If a is the leading coefficient of the equation of $p(x)$, is $a<0$ or is $a>0$? Give a reason for your answer.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} p(x)=-\infty \\
& \therefore a<0 .
\end{aligned}
$$

6. How many roots of $p(x)$ are imaginary? Give a reason for your answer. By FTA, $p(x)$ has s roots bc its quintic.
The graph of $p(x)$ has only 1 real root with multiplicity 1.

Thus, the remaining 4 roots are imaginary.
7. If c is the constant term of the equation of $p(x)$, what is the value of c ? Give reason for your answer.

The constant of an equation is the y-value of the y-int.
The graph of $p(x)$ has y int of $(0,2), \therefore c=2$
8. Is it possible that there are four sign changes in the equation of $p(x)$? Give a reason for your answer.

If $p(x)$ had 4 sigh changes, Decartes' Rule of signs
Says there will be 4,2 or 0 positive roots.
But the graph of $p(x)$ only shans 1 positive root.
$\therefore p(x)$ cannot have 4 sign change.

