Homework 4.2

$$f(x) = 6x^{3} + 11x^{3} - 24x^{2} - 39x - 10$$

$$g(x) = 2x^{3} - 3x^{2} - 8x + 12$$
1. Make a list of all the possible rational roots of $f(x)$.

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 1}, \pm 2, \pm 5, \pm 40$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 44, \pm 6, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{\pm 2}, \pm 3, \pm 7$$

$$PRE = \frac{\pm 1}{2}, \pm 2, \pm 5, \pm 7$$

$$PRE = \frac{\pm 1}{2}, \pm 7$$

A table of values for a polynomial function, h(x), defined by the equation $h(x) = ax^3 + 5x^2 - 12x + c$. The only roots of h(x) lie on the interval -3 < x < 2.

x	-3	-2	-1	0	1	2
h(x)	-77	0	15	4	3	48

