\qquad

Homework 4.2

$f(x)=6 x^{4}+11 x^{3}-24 x^{2}-39 x-10$	$g(x)=2 x^{3}-3 x^{2}-8 x+12$
1. Make a list of all the possible rational roots of $f(x)$. $\text { PRR }=\frac{ \pm 1, \pm 2, \pm 5, \pm 10}{ \pm 1, \pm 2, \pm 3, \pm 6}$	4. Make a list of all the possible rational roots of $g(x)$. $P R R=\frac{ \pm 1, \pm 0, \pm 3, \pm 4, \pm 6, \pm R}{ \pm 1, \pm 2}$
2. Which of the possible rational roots from above appear to be actual roots based on the graph? $H P R R=-5 / 2,-1,-\frac{1}{3}, 2$	5. Which of the possible rational roots from above appear to be actual roots based on the graph? $H P R R=-2, \frac{3}{2}, 2$
3. Use synthetic division to find the actual roots of $f(x)$. (2) $6 \quad 11 \begin{array}{lllll}-24 & -39 & -10\end{array}$ -1 $\begin{aligned} & f(x)=(x-2)(x+1)(x+5 / 2)(6 x+2) \\ & 6 x+2=0 \\ & 6 x=-2 \\ & x=-1 / 3 \end{aligned}$ Roots: $-5 / 2,-1,-\frac{1}{3}, 2$	6. Use synthetic division to find the actual roots of $g(x)$. -2 2 $\frac{3}{2}$ $g(x)=(x+2)(x-2)\left(x-\frac{3}{2}\right)$ Roots: $-2, \frac{3}{2}, 2$

A table of values for a polynomial function, $h(x)$, defined by the equation $h(x)=a x^{3}+5 x^{2}-12 x+c$. The only roots of $h(x)$ lie on the interval $-3<x<2$.

x	-3	-2	-1	0	1	2
$h(x)$	-77	0	15	4	3	48

7. Based on the values in the table, can it be determined that $a>0$ or $a<0$? Give a reason for your choice.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} h(x) & =\infty \\
\therefore \quad a & >0
\end{aligned}
$$

8. What is the value of c in the equation of $h(x)$? Give a reason for your answer.

The y-coordinant of the y-intercept is the same as
The constant term.
$h(x)$ hes y-intercept of $(0,4)$, thus $c=4$.
9. Find the value of a using the fact that $h(1)=3$.
Show your work.
$h(x)=a x^{3}+5 x^{2}-12 x+4$
$3=a(1)^{3}+5(1)-12(1)+4$
$3=a+5-12+4$
$3=a-3$

$6=a$$\quad$| 10. Make a list of all the possible rational roots of |
| :--- |
| $h(x)$ now that the values of a and c are known. |
| Then, investigate the graph and identify |
| which three possible rational roots are the |
| most probable rational roots. |

11. Use synthetic division to show that the most probable roots you identified in question 10 are, in fact, rational roots of $h(x)$.

$\begin{array}{ccccc}-2 & 6 & 5 & -12 & 4 \\ & 0 & -12 & 14 & -4 \\ 2 & 6 & -7 & 2 & \boxed{1} \\ & 0 & 3 & 2 & \end{array}$
$2 / 3$

0	4
$6 \quad L 0$	

$$
h(x)=(x+2)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right) \cdot 6
$$

$$
\operatorname{loots}=-2, \frac{1}{2}, 2 / 3
$$

