\qquad page 3

Homework 4.1

Given the graph of the function $h(x)$, a polynomial function of least degree, pictured to the right, answer questions $1-2$.

1. What type of function is $h(x)$? Give a reason for your answer.

If the graph of $h(x)$ were shifted den, the maximum number of z eros is 4 . By FTA, $h(x)$ is likely quartic.
2. What is the combination of positive, negative, imaginary and zero roots of $h(x)$? Give a reason for your answer.
1 negative root $\rightarrow x=-3$ \} ~ e a c h ~ m u l t i p l i c i t y ~
1 positive root $\rightarrow x=4 \mathrm{~S}$ of 1 .

The two remaining roots are imaginary.

Answer questions 3-9 about the function $f(x)=6 x^{4}-x^{3}-34 x^{2}+19 x+10$.

9. Using a graphing calculator, sketch a graph of $f(x)$. Then, based on the graph, which combination from your table in exercise 8 is the correct combination. Give a reason for your answer.

$$
\begin{array}{r|r|l|ll}
p & N & \text { zero } & i & \text { cs the correct combo because } \\
\hline 2 & 2 & 0 & 0 & \\
& & \\
& & \\
& & \text { and crosses the negative } x \text {-ais twice } \\
& &
\end{array}
$$

Given the graph of the function $g(x)$, a polynomial function of least degree, pictured to the right, answer questions $10-11$.
10. What type of function is $g(x)$? Give a reason for your answer.

If $g(x)$ were shifted down, it could cross the

$$
\text { x-axis } 3 \text { times. }
$$

By the FTA, $g(x)$ is likely cubic.
11. What is the combination of positive, negative, imaginary and zero roots of $g(x)$? Give a reason for your answer.
By FTA, since $g(x)$ is likely cubic, it has 3 roots.
the graph of $g(x)$ shans 1 positive, O negative, O zero roots.

The two remaining roots must be imaginary.

