Homework 3.6

In exercises $1-6$, identify the given characteristics of the function given in algebraic form.

$$
\begin{gathered}
f(x)=-(x+3)(x+1)(x-2) \\
f(x)=-x^{3}+\cdots+6 \\
\begin{array}{l}
\text { 1. Identify the zeros of } f(x) \text { and their multiplicities. } \\
x=-3,-1,2 \quad \text { each have mut of } 1
\end{array}
\end{gathered}
$$

2. Identify the end behavior of $f(x)$ and give a reason for your answer.

BIC $f(x)$ has ODD degree and / lead coefficient is negative,
$\lim _{x \rightarrow \infty} f(x)=-\infty \quad \lim _{x \rightarrow-\infty} f(x)=\infty$
3. Sketch a possible graph of $f(x)$ based on the zeros, their multiplicities, and the end behavior that you identified.

4. Identify the zeros of $g(x)$ and their multiplicities.

$$
\begin{aligned}
& x=0 \text { has mut of } 2 \\
& x=-2 \text { hes mult of } 1
\end{aligned}
$$

5. Identify the end behavior of $g(x)$ and give a reason for your answer.
$B(c g(x)$ is ODD degree and lead coefficient is positive...
$\lim _{x \rightarrow \infty} f(x)=\infty$

6. Sketch a possible graph of $f(x)$ based on the zeros, their multiplicities, and the end behavior that you identified.

Given the function $h(x)=-x^{3}+4 x^{2}+5 x$, answer the following questions $7-9$.
7. Determine the left and right end behavior. Justify your answer.

$$
\left.\begin{array}{l}
\lim _{x \rightarrow \infty} h(x)=-\infty \\
\lim _{x \rightarrow-\infty} h(x)=\infty
\end{array}\right\} \begin{aligned}
& b / c h(x) \text { is OPD degree } \\
& \text { and negative lead coefficient }
\end{aligned}
$$

8. Completely factor $h(x)$ and state the zeros and their multiplicities.

$$
\left.\left.\begin{array}{ll}
h(x)=-x\left(x^{2}-4 x-5\right) & \text { zeros of } h(x) \text { are } \\
h(x)=-x(x-5)(x+1) & x=-1,0 \text { and } 5 \text { each } \\
0=-x \\
0=x
\end{array}\right\} \begin{array}{l}
0=x-5 \\
5=x
\end{array}\right\} \begin{aligned}
& 0=x+1 \\
& -1=x
\end{aligned} \quad \text { with multiplicity of } 1
$$

9. Sketch the graph of $h(x)$ on the axes to the right.

TO RIGHT

In exercises $10-15$, identify the given characteristics of the function given in algebraic form.

Use the graph of the function, $f(x)$, pictured to the right to answer questions $16-17$.
16. What type of function is $f(x)$? Explain your reasoning.

- $x=-3$ has Even malt ≥ 2 bic $f(x)$ is tangent to x-axis at $x=-3$.
- $x=1$ and $x=4$ each have ODD mult of 1 b/c $f(x)$ crosses the x-ax at $x=1$ and $x=4 \quad w / 0$ changing concavity.
- The sum of the zeros mut is even ≥ 4
$\therefore f(x)$ has even degree ≥ 4

17. Would the leading coefficient of the equation of $f(x)$ be positive or negative? Explain your reasoning.

$$
\begin{aligned}
& f(x) \text { falls on right } \\
& \therefore f(x) \text { has lead coefficent negative }
\end{aligned}
$$

\qquad
Use the graph of the function, $f(x)$, pictured to the right to answer questions $18-19$.
18. What type of function is $f(x)$? Explain your reasoning.

- $x=-4$ has even multiplicity ≥ 2 bc $f(x)$ is tangent to x-axis at $x=-4$
- $x=1$ has ODD multiplicity 23 blc $f(x)$ crosses x-axis and change concavity at $x=1$.
- The sum of the zeros multiplicities is ODD ≥-5.
$\therefore f(x)$ is ODD degree ≥ 5

19. Would the leading coefficient of the equation of $f(x)$ be positive or negative? Explain your reasoning.

$f(x)$ rises to right.
\therefore The lead coefficient ot $f(x)$ is positive.

Use the graph of the function, $f(x)$, pictured to the right to answer questions $20-21$.
20. What type of function is $f(x)$? Explain your reasoning.

- $x=-2$ is oDD multiplexity $\geqslant 3$ b/c $f(x)$ crosses the x-axis and changes concavity at $x=-2$
- $x=3$ is OPD multiplicity $=1 \mathrm{~b} / \mathrm{c} f(x)$ crosses the x-axis and doesn't change concanty of $x=3$
- The sum of the zeros multiplicities is even ≥ 4
$\therefore f(x)$ is even degree ≥ 4

21. Would the leading coefficient of the equation of $f(x)$ be positive or
 negative? Explain your reasoning.
$f(x)$ rises on right
$\therefore \quad f(x)$'s lead coefficient is positive.
