# Review 

## No Calculator

| 8. | 9. | 10. | 11. | 12. | 13. | 14. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | $B$ | $B$ | $E$ | $C$ | $D$ | $E$ |

Consider the one - to - one function $H(x)=-\sqrt{-x+3}$, to answer the following questions.
a. What is the domain of $H(x)$ ? Show your work, using the equation, and leave your answer in interval notation.

b. Sketch an accurate graph of $H(x)$ on the set of axes provided using at least three points.

$$
H=-\sqrt{-(x-3)}
$$

1 pt for vertex 1 pt for rest of graph


c. Sketch a graph of the inverse function, $H^{-1}(x)$.

To find pouts for $H^{-1},(x, y) \rightarrow(y, x)$
Show and explain the numerical analysis that you did to obtain the graph of the inverse function.
d. Find the equation, with constraint, for $\mathrm{H}^{-1}(x)$.

No Calculator Show your work and leave your answer as a quadratic in standard form, $a x^{2}+b x+c$.

$$
\begin{aligned}
x & =-\sqrt{-y+3} \\
(-x) & =\sqrt{-y+3})^{2} \\
x^{2} & =-y+3 \\
x^{2}-3 & =-y \\
-x^{2}+3 & =y
\end{aligned}
$$



$$
\begin{gathered}
H^{-1}(x)=-x^{2}+3, \quad x \leq 0 \\
+1
\end{gathered}
$$

8. Which of the following functions would have graphs that exhibit symmetry with the $y$-axis?
ODD even
II. $g(x)=2 x^{2}-3 x^{4}$
III. $h(x)=2 x^{3}+3 x$
I. $f(x)=2 x|x|-3 x^{2}$
A. I and III only
B. I and II only
C. I only
D. III only
E. II only
9. What does the graph of $f(x)=\left\{\begin{array}{ll}\frac{2}{3} x^{2}+2 x, & x<-3 \\ -2 x-6, & x>-3\end{array}\right.$ look like at the value $x=-3$.
A. The graph is defined but has a jump discontinuity at $x=-3$.
B. The graph has a point discontinuity at $x=-3$. Same height, but missing point
C. The graph is not defined but has a jump discontinuity at $x=-3$.
D. The graph is continuous at $x=-3$.
E. No conclusion can be drawn about the graph of $f(x)$ at $x=-3$.

$$
\begin{array}{rr}
3 x-6=0 \\
x=2 & x+1=0 \\
x=-1
\end{array}
$$

10. If the function $g(x)=|3 x-6|+|x+1|$ were written as a piece-wise defined function without absolute value bars, which of the following expressions would be $g(x)$ for the interval $x \leq-1$ ?
A. $-2 x+7$
B. $-4 x+5$
C. $4 x-5$
D. $-4 x-5$
E. $-2 x-5$

11. Which of the following statements is/are true about the function $f(x)=-3|x|+2 x^{5}+1$ ?
I. $f(x)$ is an even function.
II. II. $f(x)$ is an odd function.
III. The graph of $f(x)$ exhibits $y$ - axis reflective symmetry.
IV. The graph of $f(x)$ exhibits origin rotational symmetry.

$$
f(-x)=-3|-x|+2(-x)^{5}+1
$$

A. I and III only
B. II and IV only

$$
f(-x)=-3|x|-2 x^{5}+1 \quad \therefore f(-x) \neq f(x)
$$

C. I and IV only
D. II and III only

$$
S(-x)=-\left[3|x|+2 x^{5}-1\right] \therefore f(-x) \neq-f(x)
$$

E. None of the above statements are true because is neither even nor odd.
12. Which of the statements is/are true about the graph of the functions $F(x)$ and $G(x)$ pictured?
I. $F(x)<G(x)$ on the interval $(-1,3]$. $T$
II. $G(F(1))=3$. $T$
III. The range of $G(x)$ is $[-1,4]$. $T$
A. I and II only
B. I and III only

C. D II and III
D. II only
E. III only
13. Which of the following functions is graphed to the right?

14. Below are numerical or graphical representations of functions. Assuming that the numerical representations are continuous functions, for which of the functions does the inverse function NOT exist?
I.

$1-1$
A. I only
B. II only
C. I and II only
D. III only
E. II and III only

