Review Unit 2. Test is cumulative over unit 1 and unit 2.

1.	2.	3.	4.	5.	6.	7.
B	A	A	A	J	D	A

Calculator

Review

FREE RESPONSE – Calculator Permitted

Consider the functions, f(x) and g(x) shown below. The table represents values on the graph of a continuous function, f(x).

Calculator

	x	-6	-3	-1	1	3	6
j	f(x)	5	3	-1	1	3	5

$$g(x) = \frac{|x-6| - |x-1|}{x+1}$$

a. Frasier claims that *f*(*x*) is an even function. Cason claims that Frasier is incorrect and then explains why. Pretend that you are Cason and offer Frasier an explanation. Give a specific example in your explanation.

b. If $p(x) = \sqrt{x+4} - 1$, for what value of x does p(x) = f(g(2))? Show all of your work.

$$g(z) = \frac{|z-u| - |z-1|}{|z+1|}$$

$$= \frac{|-u| - |1|}{|z+1|}$$

$$= \frac{|u-1|}{|z+1|}$$

$$= \frac{|u-1|}{|z+1|}$$

$$= \frac{|u-1|}{|z+1|}$$

$$\int x+u - 1 = f(z)$$

Review

Name

page 19

d. Rewrite g(x) as a piece-wise defined function, without absolute value bars. Show the analysis that leads to your answer.

$$g(x) = \frac{|x-6| - |x-1|}{x+1}$$

$$\chi_{-4} = 0$$

$$\chi_{-1} = 0$$

$$\chi_{-1} = 0$$

$$\chi_{-1} = 0$$

$$\chi_{-1} = 0$$

$$\frac{x^{2}-2}{x^{2}}$$

$$\frac{x^$$

3. Which of the statements is/are true about the graph of the piecewise defined function, g(x).

Calculator

5. Which of the following functions is an even function?

A. I and III only

E. III only

6. Use the graph of g(x) pictured to determine which of the following statements is/are true.

I. g(x) is increasing on the interval $(-2,1)\cup(3,7)$. T

- II. g(x) is an example of a one to one function. $\boldsymbol{\mathcal{F}}$
- III. $g(x) = -(x-1)^2 + 5$ on the interval $-2 \le x \le 3$. T x = 1 + 5 on the interval $-2 \le x \le 3$. T A. I only
- B. I and II only C. II only D. I and III only E. I, II, and III

7. If $g(x) = \frac{\sqrt{3x+16}}{x+4}$ and f(x) is the function pictured, then what is the value of f(g(0))?

$$g(v) = \frac{5 \cdot v + 16}{0 + 4}$$
$$= \frac{\sqrt{16}}{4}$$
$$= \frac{4}{4}$$
$$g(v) = 1$$

Review