Review Unit 2.

Test is cumulative over unit 1 and unit 2.

1.	2.	3.	4.	5.	6.	7.
B	A	D	A	C	D	A

Calculator

Review

Consider the functions, $f(x)$ and $g(x)$ shown below. The table represents values on the graph of a continuous function, $f(x)$.
Calculator

x	-6	-3	-1	1	3	6
$f(x)$	5	3	-1	1	3	5

$$
g(x)=\frac{|x-6|-|x-1|}{x+1}
$$

a. Frasier claims that $f(x)$ is an even function. Cason claims that Frasier is incorrect and then explains why. Pretend that you are Cason and offer Fraser an explanation. Give a specific example in your explanation.
If $f(x)$ is EVEN, then for every point (x, y) there exists $(-x, y)$
$f(-1)=-1$ which should mean $f(1)=-1$, but actually $f(1)=1$
$\therefore f(x)$ is not EVEN
b. If $p(x)=\sqrt{x+4}-1$, for what value of x does $p(x)=f(g(2))$? Show all of your work.

$$
\theta\left(\begin{array}{rl}
g(2) & =\frac{|2-6|-|2-1|}{2+1} \\
& =\frac{|-4|-|1|}{3}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\sqrt{x+4}-1=f(g(2)) \tag{2}\\
\sqrt{x+4}-1=f(1) \\
\sqrt{x+4}-1=1 \\
\sqrt{x+4}=2 \\
x+4=4 \\
x=0
\end{array}\right\} \text { Table }
$$

\qquad
c. Does the inverse, $f^{-1}(x)$ exist? Completely explain your reasoning.

Calculator

Nut part of work to get points
$f(x)$ decreases and then increases. ti
$\therefore f(x)$ is not $1-1$
$\therefore f^{-1}(x)$ does not exist.
d. Rewrite $g(x)$ as a piece-wise defined function, without absolute value bars. Show the analysis that leads to your answer.

$$
\left.\left.\begin{array}{l}
g(x)=\frac{|x-6|-|x-1|}{x+1} \\
x-6=0 \\
x=6
\end{array}\right\} \begin{array}{r}
x-1=0 \\
x=1
\end{array}\right\} \begin{array}{r}
x+1 \neq 0 \\
x \neq-1
\end{array}
$$

$x=2$ $x=10$
(6)

$$
\begin{array}{l|l}
y=\frac{-(x-6)-{ }^{+}(x-1)}{x+1} & y=\frac{(x-6)-(x-1)}{x+1} \\
y=\frac{-x+6-x+1}{x+1} & y=\frac{x-6-x+1}{x+1} \\
y=\frac{-2 x+7}{x+1} & y=\frac{-5}{x+1}
\end{array}
$$

$$
\begin{cases}\frac{5}{x+1}, & x<1, x \neq-1 \\ \frac{-2 x+7}{x+1}, & 1 \leq x \leq 6\end{cases}
$$

Review

The graph of a function, $h(x)$, is pictured. Use the graph to answer questions 1-2.

Calculator
$[0,3]$

1. Which of the following intervals identifies all values of x for which $h(x) \leq 0$?
A. $(0,3)$
B. $[0,3]$
C. $[-5,0] \cup[3,5)$
D. $(-5,0) \cup(3,5)$
E. $[-5,0) \cup(3,5)$

Bela or on x-axis

2. If $f(x)=\sqrt{x-4}+4$, for how many values of x is $f(x)=h(x)$?

B. One
C. Two
E. Cannot be determined
3. Which of the statements is/are true about the graph of the piecewise defined function, $g(x)$.
I. The domain of $g(x)$ is $(-9,3) \cup(3, \infty)$. T
II. The graph of $g(x)$ is a continuous at $x=-2$.

III. The graph of $g(x)$ has a point discontinuity at $x=3$.

B. I and II only

(1) $x=2 \quad-|x+3|-4 \stackrel{?}{=} 2 x+1$
C. II and III only
$-|-2+3|-4 \neq 2(-2)+1$ page 21
4. A function $F(x)$ is such that $F(-x)=-F(x)$. If $F(2)=-5$, which of the following points must also be on the graph of $F(x)$?
$(-2,5)$
A. $(-2,5)$
B. $(2,5)$
C. $(-2,-5)$
D. $(-5,2)$
E. $(-5,-2)$

Calculator
5. Which of the following functions is an even function?

A. I and III only
B. II only
C. I only
D. I and II only
E. III only

Review
6. Use the graph of $g(x)$ pictured to determine which of the following statements is/are true.
I. $g(x)$ is increasing on the interval $(-2,1) \cup(3,7)$. T
II. $g(x)$ is an example of a one - to - one function. F
III. $g(x)=-(x-1)^{2}+5$ on the interval $-2 \leq x \leq 3$. T
A. I only vertex (isS) $\begin{gathered}\text { opens dem }\end{gathered}$
B. I and II only
C. II only
D.) I and III only
E. I, II, and III
7. If $g(x)=\frac{\sqrt{3 x+16}}{x+4}$ and $f(x)$ is the function pictured, then what is the value of $f(g(0))$?
A. 4
B. 3
C. 2
D. 1
E. Undefined

$$
\begin{aligned}
g(0) & =\frac{\sqrt{3 \cdot 0+16}}{0+4} \\
& =\frac{\sqrt{10}}{4} \\
& =\frac{4}{4} \\
g(0) & =1
\end{aligned}
$$

$f(1)=4$

Review

