Homework 2.2

Determine if the following functions are even, odd, or neither even nor odd. Show the algebraic analysis that justify your answers. Then, graph each function on the calculator and omplain why that the graph confirms the algebraic analysis.

1. $\begin{array}{ll} f(x)=5-3 x & f(-x)=5-3(-x) \\ & f(-x)=5+3 x \\ f(-x) \neq f(x) & \\ f(-x) \neq-f(x) & \end{array}$ $\therefore f(x)$ is Neither EVEN nor ODD blc	$\begin{aligned} \text { 2f(x)} & =x^{3}-5 x \\ f(-x) & =(-x)^{3}-5(-x) \\ & =-x^{3}+5 x \\ f(-x) & =-\left(x^{3}-5 x\right) \\ \therefore f(-x) & =-f(x) . \\ \therefore f(x) & \text { is ODD } \end{aligned}$ 2.
3. $\begin{aligned} & f(x)=x\|2 x\|-3 x^{3} \\ & f(-x)=(-x)\|2(-x)\|-3(-x)^{3} \\ &=-x\|-2 x\|-3\left(-x^{3}\right) \\ &=-x\|2 x\|+3 x^{3} \\ & f(-x)=-\left[x\|2 x\|-3 x^{3}\right] \\ & \therefore f(-x)=-f(x) \\ & \therefore f(x) \text { is ODD } \end{aligned}$	4. $\begin{aligned} & f(x)=x^{2}-4 \\ & f(-x)=(-x)^{2}-4 \\ & f(-x)=x^{2}-4 \end{aligned}$ $\therefore f(-x)=f(x)$ $\therefore f(x)$ is EVEN
5. $\begin{aligned} & f(x)=x^{2}+3 x^{4} \\ & f(-x)=(-x)^{2}+3(-x)^{4} \\ & f(-x)=x^{2}+3 x^{4} \end{aligned}$ $\therefore f(-x)=f(x)$ $\therefore f(x)$ is EVEN	6. $\begin{aligned} & f(x)=\sqrt{x^{2}-3 x} \\ & f(-x)=\sqrt{(-x)^{2}-3(-x)} \\ & f(-x)=\sqrt{x^{2}+3 x} \\ & \therefore f(-x) \neq f(x) \\ & \therefore f(-x) \neq-f(x) \end{aligned}$ $\therefore f(x)$ is Neither EVEN NOR ODD
7. $\begin{aligned} f(x) & =x^{6}-\left\|2 x^{3}\right\| \\ f(-x) & =(-x)^{6}-\left\|2(-x)^{3}\right\| \\ & =x^{6}-\left\|\partial \cdot\left(-x^{3}\right)\right\| \\ & =x^{6}-\left\|-2 x^{3}\right\| \\ f(-x) & =x^{6}-\left\|2 x^{3}\right\| \\ \therefore f(-x) & =f(x) \\ \therefore f(x) & \text { is EVEN } \end{aligned}$	8. $\begin{aligned} & f(x)=\frac{3 x^{3}-2 x}{x^{5}} \quad f(-x)=\frac{3(-x)^{3}-x(-x)}{(-x)^{5}} \\ &=\frac{3 \cdot\left(-x^{3}\right)+2 x}{-x^{5}} \\ &=\frac{-3 x^{3}+2 x}{-x^{5}} \\ &=\frac{-\left(3 x^{3}-2 x\right)}{-1 \cdot x^{5}} \\ & f(-x)=\frac{3 x^{3}-2 x}{x^{5}} \\ & \therefore f(-x)=f(x) \\ & \therefore f(x) \text { is EVEN } \end{aligned}$

For each of the functions graphed below, determine if they represent even or odd functions. If the function is neither even nor odd, state neither. Give a reason for your choice.
9.

The graph hes rotational symmetry at the origin.
\therefore ODD Function
11.

The graph hes reflectional symmetry about y-axis.
\therefore Even Function
10.

The graph has reflectional symmetry about y-axis.
\therefore Even Function
12.

The graph hes rotational symmetry at the origin
\therefore ODD FUNCTION

For each of the following tables of values, determine if the function represented is even or odd. If the function is neither even nor odd, state neither. Give a reason for your choice.
13.

| x | -7 | -3 | -2 | $(1$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F(x)$ | 2 | 5 | -1 | 2 | 3 | 7 |

Cor every point (x, y) there is not have a point $(-x,-y)$ or $(-x, y)$
$\therefore F(x)$ is neither ODD nor Even
14.

x	-4	-2	0	2	4
$F(x)$	2	-5	8	-5	2

For every point (x, x) there is a point $(-x, y)$
$\therefore F(x)$ IS EVEN
15.

x	-8	-5	-1	0	1	5	8
$F(x)$	-2	-3	1	0	-1	3	2

For every point (x, y) there is a point $(-x,-y)$
$\therefore F(x)$ is ODD

