Hw

Name

Homework 1.6

Given below is the graph of a function, f(x), a table of values of a discrete function, g(x), and an equation of a function, h(x). In questions 1 – 4, there are two quantities that you are to consider, Quantity A and Quantity B. Find the values of both quantities. Then, after comparing them, place a <, >, or = in the box between the described quantities. If no comparison can be made, simply write N.C. in the box.

Table of Values for g(x)

-4	-5
-3	-2
-1	0
2	4
4	5
6	-2
	•

Equation for h(x)

$$h(x) = \sqrt{x+4} + 2$$

SHOW OR EXPLAIN YOUR WORK!				
	Quantity A	<, >, =, or N.C.	Quantity B	
1.	$h(s) = \sqrt{5 + 4 + 2} - 2f(4) + 3h(5)$ $= -2(2) + 3(5)$ $= -2(2) + 3(5)$ $= -4 + 15$ $= 5$ $= -4 + 15$ $= 11$	NС	f(g(-4)) is underfind g(-4)=-S f(-s) is underfind	
2.	$h(5) - 2 \cdot g(6)$ $= 5 - 7(-7)$ $= 5 + 4$ $= 9$		$h(g(4)) + 2 \cdot f(-2)$ g(w) = 5 = 5 + 9(2) h(5) = 5 = 5 + 4 = 9	
3.	f(g(h(0))) is undefine h(os= vort +2 = vart +2 = 2+2 = 4	NC	h(g(-1)) = 4 g(-いこの h(のこち	
4.	The number of x - values for which h(x) = f(x) h(x) and $f(x)$ have $ x$ -volues where their graphs intersect	2	The number of x - values for which $p(x)$ = $g(h(12))$ if $p(x) = -2 x + 3 $ -2 x+3 = g(4) -2 x+3 = -2 x+3 = 1 $x+3 \pm 1$ $x = -3\pm 1$ x = -4-2 is 2 values	

For questions 5 - 10, use the functions below to find an equation for the indicated composite functions.

$f(x) = x^2 - 3x + 2$ $g(x) = \frac{2}{3}$	$\frac{4x+3}{x-2} \qquad \qquad h(x) = 2x-1$
5. $2x \cdot h(x) - f(x) = \Im x \cdot (\Im x - i) - (x^2 - \Im x + 2)$	6. $(g+h)(x) = \frac{2x+3}{x-2} + \frac{(2x-1) \cdot (x-2)}{x-2}$
= $4x^2 - \Im x - x^3 + \Im x - \Im$	$= \frac{2x+3}{x-2} + \frac{2x^2 - x - 4x+2}{x-2}$
= $3x^2 + x - \Im$	$= \frac{2x^2 - 3x+5}{x-2}$
7. $g(h(x)) = g(2x-1)$	8. $f(h(x)) = f(\neg x^{-1})$
$= \frac{2(2x-1)+3}{(2x-1)-3}$	$= (\neg x^{-1})^2 - 3(\neg x^{-1}) + 3$
$= \frac{4x-3+3}{2x-3}$	$= u_1x^2 - u_1x + 1 - (o_1x + 3 + 3)$
$= \frac{4x+1}{2x-3}$	$= u_1x^2 - (o_1x + 6)$
9. $(f \cdot h)(x) = f(x) \cdot h(x)$ $= (x^{2} - 3x + 2)(2x - 1)$ $= 2x^{3} - 6x^{2} + 6(x - x^{2} + 3x - 2)$ $= 2x^{3} - 7x^{2} + 7x - 2$	$10. \frac{f(x+h)-f(x)}{h} = \frac{\left[(x+h)^2 - 3(x+h) + 3\right] - \left[x^2 - 3x+3\right]}{h}$ $= \frac{x^2 + 3hx + h^2 - 3x + 3h + 5h - x^2 + 3h + 5h}{h}$ $= \frac{3hx + h^2 - 3h}{h}$ $= \frac{h(3x+h-3)}{h}$ $= 3x + h - 3$