\qquad

Homework 1.6

Given below is the graph of a function, $f(x)$, a table of values of a discrete function, $g(x)$, and an equation of a function, $h(x)$. In questions $1-4$, there are two quantities that you are to consider, Quantity A and Quantity B. Find the values of both quantities. Then, after comparing them, place a<,>, or $=$ in the box between the described quantities. If no comparison can be made, simply write N.C. in the box.

Graph of $f(x)$

Table of Values for $g(x)$

-4	-5
-3	-2
-1	0
2	4
4	5
6	-2

Equation for $h(x)$

$$
h(x)=\sqrt{x+4}+2
$$

SHOW OR EXPLAIN YOUR WORK!

	Quantity A	$\begin{gathered} <,>,=, \text { or } \\ \text { N.C. } \end{gathered}$	Quantity B
1.	$h(5)$ $=\sqrt{5+4}+2$ $-2 f(4)$ $+3 h(5)$ $=\sqrt{9}+2$ $=-2(2)+3(5)$ $=3+2$ $=-4+15$ $=5$ $=11$	$N C$	$f(g(-4))$ is undefind $\begin{aligned} & g(-4)=-5 \\ & f(-5) \text { is undefind } \end{aligned}$
2.	$\begin{aligned} h(5) & -2 \cdot g(6) \\ \rightarrow & =5-2(-2) \\ = & 5+4 \\ & =9 \end{aligned}$	=	$\begin{array}{cc} & h(g(4))+2 \cdot f(-2) \\ g(4)=5 & =5+2(2) \\ h(5)=5 & =5+4 \\ & =9 \end{array}$
3.	$\begin{aligned} & f(g(h(0))) \text { is undefinal } \\ h(0) & =\sqrt{0+4}+2 \mid g(4)=5 \\ & =\sqrt{4}+2 \\ & =2+2 \\ & =4 \end{aligned}$	$N C$	$\begin{aligned} & \\ & g(-1)=0 \\ & h(0)=4 \end{aligned}$
4.	The number of x - values for which $h(x)=f(x)$ $h(x)$ and $f(x)$ have $(x$-values where their graphs intersect		The number of x - values for which $p(x)$ $\begin{aligned} & =g(h(12)) \text { if } p(x)=-2\|x+3\| \\ & -2\|x+3\|=g(6) \\ & -2\|x+3\|=-2 \\ & \|x+3\|=1 \\ & x+3 \pm 1 \\ & x=-3 \pm \mid \\ & x=-4,-2 \therefore 2 \text { valuss } \end{aligned}$

For questions $5-10$, use the functions below to find an equation for the indicated composite functions.

$$
f(x)=x^{2}-3 x+2 \quad g(x)=\frac{2 x+3}{x-2} \quad h(x)=2 x-1
$$

$\text { 5. } \begin{aligned} 2 x \cdot h(x)-f(x) & =2 x \cdot(2 x-1)-\left(x^{2}-3 x+2\right) \\ & =4 x^{2}-2 x-x^{2}+3 x-2 \\ & =3 x^{2}+x-2 \end{aligned}$	$\text { 6. } \begin{aligned} (g+h)(x) & =\frac{2 x+3}{x-2}+\frac{(2 x-1) \cdot(x-2)}{x-2} \\ & =\frac{2 x+3}{x-2}+\frac{2 x^{2}-x-4 x+2}{x-2} \\ & =\frac{2 x^{2}-3 x+5}{x-2} \end{aligned}$
$\text { 7. } \begin{aligned} g(h(x)) & =g(2 x-1) \\ & =\frac{2(2 x-1)+3}{(2 x-1)-2} \\ & =\frac{4 x-2+3}{2 x-3} \\ & =\frac{4 x+1}{2 x-3} \end{aligned}$	$\text { 8. } \begin{aligned} f(h(x)) & =f(2 x-1) \\ & =(2 x-1)^{2}-3(2 x-1)+2 \\ & =4 x^{2}-4 x+1-6 x+3+2 \\ & =4 x^{2}-10 x+6 \end{aligned}$
$\text { 9. } \begin{aligned} (f \cdot h)(x) & =f(x) \cdot h(x) \\ & =\left(x^{2}-3 x+2\right)(2 x-1) \\ & =2 x^{3}-6 x^{2}+4 x-x^{2}+3 x-2 \\ & =2 x^{3}-7 x^{2}+7 x-2 \end{aligned}$	$\text { 10. } \begin{aligned} \frac{f(x+h)-f(x)}{h} & =\frac{\left[(x+h)^{2}-3(x+h)+2\right]-\left[x^{2}-3 x+2\right]}{h} \\ & =\frac{\left.x^{6}+2 h x+h^{2}-3 x-3 h+h-x x+3 / x \cdot h\right]}{h} \\ & =\frac{2 h x+h^{2}-3 h}{h} \\ & =\frac{h(2 x+h-3)}{h} \\ & =2 x+h-3 \end{aligned}$

