\qquad

Homework 1.4

$f(x)$ is the solid line graph below. $\quad g(x)$ is the dashed line graph below.

Identify each of the following values of x. Completely explain your reasoning for why you chose the values that you chose. Leave your answers in interval notation, if necessary.

1. Intervals where $g(x)<f(x)$ If $g(x)<f(x)$ then the graph of g is below the graph of f. $[-7,-6) \cup(6,10]$	2. Intervals where $g(x)>f(x)$ If $g(x)>f(x)$ then the graph of g is aboue the graph of f. $(-6,6)$
3. Values of x where $f(x)=g(x)$ If $g(x)=f(x)$ then the graph of f and g are intersecting each other $x=-6,6$	4. The value(s) of x such that $g(x)=0$ If $g(x)=0$, then the graph of g is on the x-axis. $x=-2,10$
5. The value(s) of x such that $g(x) \cdot f(x)>0$ If $g(x) \cdot f(x)>0$, the graphs of $g(x)$ and $f(x)$ are on same side of the x-axis. $[-7,-5) \cup(-3,1) \cup(4,10)$	6. The value(s) of x such that $g(x) \cdot f(x)<0$ If $g(x) \cdot f(x)<0$, the graphs of $g(x)$ and $f(x)$ are on opposite sides of the x-axi's. $(-5,-3) \cup(1,4)$

Pictured below is the graph of a function, $f(x)$, and a table of values representing a discrete function, $g(x)$.

x	$g(x)$
-5	2
-2	4
0	-2
1	-5
3	0

7. What is the value of $4[-2 f(-1)-2 g(1)]$?

$$
\begin{aligned}
& =4[-2(2)-2(-5)] \\
& =4[-4+10] \\
& =4[6] \\
& =24
\end{aligned}
$$

$p(2)=f(1)-g(-2)$?

$$
\begin{aligned}
a(2)^{2}-3(2) & =-2-4 \\
a(4)-6 & =-6 \\
4 a & =0 \\
a & =0
\end{aligned}
$$

8. If $p(x)=a x^{2}-3 x$, then for what values) of a is
9. Identify the intervals) on which $f(x)$ is increasing.

$$
(-5,-2) \cup(1,2)
$$

10. Identify the intervals) on which $f(x)$ is decreasing.

$$
(-2,1) \cup(2, \infty)
$$

11. Identify the interval(s) on which $f(x)$ is constant There is no intervals where the graph $f(x)$ is constant.
