\qquad
Free Response Practice \#/6
Calculator NOT Permitted
A table of values for a polynomial function, $g(x)=a x^{3}+5 x^{2}+4 x+c$, is shown below. Use the equation of $g(x)$ and the table to answer the questions that follow. Zero

x	-3	-2	-1	0	1	2	3	4
$g(x)$	110	32	0	c_{0}^{-4}	2	0	-28	-100

a. Two of the zeros of $g(x)$ are specifically listed in the table. What are those two zeros? Then, what is the multiplicity of each zero? Give a reason for your response to both questions.

- $g(x)$ hus a zero at $x=-1$ and $x=2$ bic $g(x)=0$ at $x=-1$ and $x=2$.
- $x=-1$ and $x=2$ are both odd multiplicity of $1+1$ b/c $g(x)$ change signs at $x=-1$ ad $x=2$.
' ε neither multiplicity can be 3 or move b/c the sum of the multiplicities wand exceed the degree of 3 .
b. Determine the values of a and c. Show your work or give an explanation for your reasoning.
- C is the y-intercept

$$
\text { with } x \text {-value }=0 \text {. }
$$

$$
\therefore \quad c=-4
$$

$$
\left.\left(\begin{array}{l}
\text { to find " } a \text { " } \\
\text { chose an } \\
\text { ordered pair } \\
\text { and plus in }
\end{array}\right) \quad \begin{array}{rl}
g(x) & =a x^{3}+5 x^{2}+4 x+c \\
2 & =a(1)^{3}+5(1)^{2}+4(1)-4 \\
2 & =a+5+4-4 \\
2 & =a+5 \\
-3 & =a
\end{array}\right)
$$

c. Between which two x - values in the table does the other zero of $g(x)$ lie? Explain your reasoning. $g(x)$ has a zero between $x=0$ and $x=1$ $b(c \quad g(x)$ changes signs between $x=0$ and $x=1\}$
d. Use the equation of $g(x)$ to find the third zero of $g(x)$, verifying your response to part c). Show your work.

$$
\begin{array}{lll}
g(x)=-3 & x^{3}+5 x^{2}+4 x-4 \\
-1) & g(x)=(x+1)(x-2)(-3 x+2) \\
-3 & 5 & 4 \\
-4 & -4 \\
0 & 3 & -8 \\
-3 & 8 & -4 \\
\hline & 0 \\
0 & -6 & 4 \\
\hline-3 & 2 & 10
\end{array}+1 \quad \begin{array}{r}
-3 x+2=0 \\
2=3 x \\
\frac{2}{3}=x
\end{array}
$$

