Free Response Practice \#/5
 Calculator NOT Permitted

Consider the following polynomial function $f(x)=-2 x^{3}-x^{2}+13 x-6$ to answer the following questions.
a. What is the left and right hand behavior of $f(x)$? Justify your answer.
$f(x)$ is ODD degree with negative lead coefficient. (t)

$$
\therefore \quad \lim _{x \rightarrow \infty} f(x)=-\infty \quad \text { and } \lim _{x \rightarrow-\infty} f(x)=\infty
$$

b. If $(x+3)$ is a factor of $f(x)$ rewrite $f(x)$ in completely factored form and identify the zeros of $f(x)$.

$$
\begin{array}{ccccc}
-3 & -2 & -1 & 13 & -6 \\
0 & 6 & -15 & 6 \\
\hline-2 & 5 & -2 & L 0
\end{array}
$$

$$
\begin{aligned}
f(x) & =(x+3)\left(-2 x^{2}+5 x-2\right) \\
& =-(x+3)\left(2 x^{2}-5 x+2\right) \\
& =-(x+3)\left[2 x^{2}-4 x-x+2\right] \\
& =-(x+3)[2 x(x-2)-1(x-2)] \\
f(x) & =-(x+3)(x-2)(2 x-1)
\end{aligned}
$$

$$
\text { Zeros ot } f(\pi)
$$

$$
\text { are } x=-3, \frac{1}{2}, 2
$$

c. Sketch a graph of $f(x)$ using the identified left and right hand behavior above and the zeros of $f(x)$.

d. Suppose a cubic polynomial function with a positive leading coefficient, $g(x)$, is such that $x=-3$ is a root of multiplicity 1 and $x=2$ is a root of multiplicity 2 . Sketch a possible graph of $g(x)$. Explain how you developed your graph.

- $g(x)$ is odd with leading positive leading coefficent

$$
\therefore \quad \lim _{x \rightarrow \infty} g(x)=\infty \quad, \lim _{x \rightarrow-\infty} g(x)=-\infty
$$

- $g(x)$ has root at $x=-3$ of ODD multiplicity $=1$ $\therefore g(x)$ crosses the x-axis at $x=-3$
$w / 0$ changing concavity
- $g(x)$ has root at $x=2$ of Even Multiplicity $=2$

$$
\therefore g(x) \text { is fangut to } x \text {-axis at } x=2
$$

