\qquad
Free Response Practice \#14
Calculator NOT Permitted
The table below shows function values and graphical properties for a cubic polynomial function, $h(x)$, at indicated values or intervals of x.

| \boldsymbol{x} | $(-\infty,-3)$ | | -3 | | $(-3,-1)$ | -1 | $(-1,1)$ | 1 | $(1, \infty)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{h}(\boldsymbol{x})$ | Increasing
 $\&$
 Concave Down | | | Decreasing
 \& Concave
 Down | 1 | Decreasing
 \& Concave
 Up | | | Increasing
 \& Concave
 Up |

a. At what x - values) does the graph of $h(x)$ reach a relative maximum? At what x-values) does the graph of $h(x)$ reach a relative minimum? Justify your answer.

- $h(x)$ reaches a relative max at $x=-3$ $b(c h(x)$ change from increasing to decreasing at $x=3$
- $h(x)$ reaches a relative min at $x=1$
$b / c h(x)$ change from decreasing to increasing at $x=1$
b. Is either of the two relative extrema that you mentioned in part (a) an absolute extremum? Justify your answer.
Neither relative extrema are absolute extremer

$$
\begin{aligned}
& \text { blu } h(x) \text { cs cubic so its end bovehiv } \\
& \text { is } \lim _{x \rightarrow-\infty} h(x)=-\infty \text { and } \lim _{x \rightarrow \infty} h(x)=\infty \\
& \text { c. Approximate at what } x \text {-values) does the graph of } h(x) \text { have a point of inflection? Justify your answer. } \\
& \text { A function has a point of inflection when the graph change concavity. } \\
& h(x) \text { 's graph change from concave dow to concave ap at } x=-1
\end{aligned}
$$ $\therefore h(x)$ has a point of inflection at $x=-1$

d. Sketch a possible graph of $h(x)$.

$$
\begin{aligned}
& \text { SEE } \\
& \text { Rubric }
\end{aligned}
$$

