Calculator NOT Permitted

Test Review Day 1

Free Response #1

Pictured to the right is the graph of a polynomial function, g(x). Use the graph to answer the questions that follow.

- a. Identify the zeros of the graph of g(x) and their multiplicities.
 Explain specifically how you know the multiplicity of each zero.
- +1 g(x) crosses x-axis at x=3 & changing concernity : x=3 is a Zero (ODD mult 23)
- g(x) crosses x-axis at x= o w/o changing concavity
 x=1 is a Zero (ODD mult=1)
 g(x) formant x-axis at x= 2
 x=2 is a Zero (Even mult 22)

b. Will the leading coefficient of the equation be positive or negative? Give a reason .

c. Estimate x - coordinates of points of inflection for g(x). Give a reason for each of your answers or how work. Zero of odd mult 23 @ x = -3 :: x = -3 is point of inflection $\frac{70T}{X^{2}} - \frac{5t(-1.087)}{2} \simeq -\frac{4.087}{2} \simeq -2.044$ (4) $x^{2} - \frac{1.087 + .02}{2} \simeq -\frac{1.07}{2} \simeq -.084$ (4) $x^{2} - \frac{.02+2}{2} \simeq -\frac{2.02}{2} \simeq 1.46$ (4)

-3,0)

Interval(s) where g(x) < 0:

38

Multiple Choice – Calculator NOT Permitted -4 -3.1-3x -125-0.6890 h(x)

1. The table above contains function values along the graph of a quintic polynomial function, h(x). The only zeros of h(x) are zeros specifically listed in the table. Which of the statements that follow is/are true about h(x)?

-2

-27

0

-9

1

5th

0 op

-2.9

-0.593

- I. (x + 3) is a factor of at least h(x) twice.
- II. The multiplicity of x = 1 cannot be determined but it must be 1 or 3.
- III. If *a* is the leading coefficient of the equation of h(x), then a > 0. True
 - - E. I and III only

3. What can be said about the value of P(-1) and the remainder when $P(x) = 2x^3 - 2x^2 - x - 3$ is divided by (x - 1).

38

A. I only D. I, II, and III

B. I and II only

C. III only

2023

2

25

3

288

Name

4. How many times is (x - 1) a factor of the polynomial function $g(x) = 2x^4 + 5x^3 - 12x^2 + x + 4$?

Hw

5. Which of the following binomials is/are factors of the polynomial function $f(x) = x^3 - 2x^2 - 11x + 12$?

6. If $f(x) = x^3 - 3x^2 - 13x + 15$ and (x - 5) is a factor of f(x), what would the function be written in completely factored form?

A.
$$f(x) = (x-1)(x+3)(x-5)$$
 S
 I
 -3
 -13
 I

 B. $f(x) = (x-1)(x-3)(x-5)$
 S
 I
 -3
 -13
 I
 S

 C. $f(x) = (x-1)(x+3)(x+5)$
 I
 2
 -3
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

- 7. The graph to the right is a polynomial function with a relative maximum at the point (-1, 4) and relative minimums at the points (-4, 0) and (2, -2). Which of the following statements is/are true?
 - I. The graph changes concavity at approximately x = -2.5.
 - II. The graph has an absolute minimum at the point (2, -2).
 - III. If c is the constant term in the equation, then c is a value between y = 2 and y = 3.

A. I only C. III only E. I, II and III B. I and II onlyD. I and III only

Test Review Day 2

Name

A quartic function, $h(x) = ax^4 - x^3 - 21x^2 + 41x - 20$, is represented numerically in the table of values below. h(x) has three distinct zeros, one of which has a multiplicity of two. Use the equation and the table to answer the questions that follow.

x -5.1 -5 -4.9 0.9 1 1.1 2 3 5 h(x) 33.861 0 -30.981 -0.183 0 -0.177 -14 -32 160									and the second second	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x	-5.1	-5	-4.9	0.9	1	1.1	2	3	5
	h(x)	33.861	0	-30.981	-0.183	0	-0.177	-14	-32	160

a. Based on the values in the table, is a > 0 or is a < 0? Give a reason for your answer.

b. Use synthetic division and one of the zeros of h(x) from the table, find the value of a. Show your work.

$$ax^{4} - x^{3} - 21x^{2} + 41x - 20$$

$$i \int \alpha -1 - 21 41 - 20$$

$$\frac{\alpha -1}{\alpha -1} (\alpha - 22) (\alpha + 14)$$

$$\frac{\alpha -1}{\alpha -1} (\alpha - 22) (\alpha + 14) (\alpha - 1)$$

$$\alpha - 1 = 0$$

$$\alpha - 1 = 0$$

$$\alpha = 1$$

c. Two of the zeros of h(x) are specifically listed in the table. Between what two values in the table does another zero of h(x) exist? Give a numerical reason for your answer.

h(x) Changes Sign between x=3 and x=5 +1 : A zero must exist between x=3 and x=5. +1

d. Based on the values in the table, which zero has an even multiplicity of at least two? Give a reason for your answer.

42

Multiple Choice - Calculator NOT Permitted

- 8. Which of the following statements is/are true about the polynomial function graphed below if all of the zeros of the function are real zeros.
 - I. The negative root has even multiplicity.
 - II. The function is even degree of at least 4. True
 - III. The positive root has a multiplicity of 1. True
 - A. I only
 - B. I and II only
 - C. II and III only

,			,,			L	,,		·· p. · · · ·	
1	-7	•			-				\wedge	
ł	ŀ				··· 4 ·-				-(
1	1				_				1	
1		[- e				1	
ļ		 							ļ	
		l		\sim	5					
		τ	\square	·	\backslash					
7	5 -	4 -	w T	2 -	1,		14		4	-
~					t			ſ		
								1		
					3)	(1		
							Υ	1		
							\sim	/		

9. The graph of g(x) is pictured to the right. For what intervals is g(x) > 0?

A.
$$(-\infty,-1)\cup(2,5)$$

B. $(-1,2)\cup(5,\infty)$
C. $(-\infty,-1]\cup[2,5]$
D. $(-\infty,-4]\cup(2,5)$
E. $(-\infty,-4)\cup(-4,-1)\cup(2,5)$

For questions 10 - 12, use the graph of the function, G(x), pictured.

2	
III only	E. I, II, and III

D.

44

14. Which of the following statements is/are true about the function, h(x), pictured to the right?

I. (x + 4) is a factor of the equation of h(x) at least twice.

- II. The equation of h(x) has a negative leading coefficient. \mathcal{T}
- III. The graph has no points of inflection. \mathcal{F}

A. I only B. II and III only C. I and II only D. II only E. I, II and III

1.	D
2.	C
3.	Ъ
4.	C
5.	С
6.	A
7.	Ē

8.	E
9.	E
10.	D
11.	A
12.	B
13.	A
14.	C