Homework 7.5

Answer the questions for each of the exponential functions below. Be sure to give justification when asked to do so.

$$
\text { 1. } H(x)=-(0.25)^{-x+2}+3
$$

a. Is the function a growth or a decay? Justify your answer.
$H(x)=-(4)^{x-2}+3$
$H(x)$ has a vertical reflection
$\therefore H(x)$ is decaying

b. What is the parent function? How is this function's graph different from that of the parent function?
$y=4^{x}$

1) reflect over x-axis
2) Translate right 2 and up 3
c. What is the domain?

$$
(-\infty, \infty)
$$

d. What is the range?

$$
(-\infty, 3)
$$

e. What is the equation of the horizontal asymptote?
$y=3$
2. $G(x)=-2\left(\frac{1}{2}\right)^{x+3}-1$
a. Is the function a growth or a decay? Justify your answer.

$$
G(x)=-2(2)^{-(x+3)}-1
$$

$G(x)$ has a horizontal and vertical reflection
$\therefore G(x)$ is growing

b. What is the parent furletion?

How is this function's graph different from that of the parent function?

$$
y=2^{x}
$$

1) Reflect vertically $\dot{\varepsilon}$ horizontally
2) Stretch vertically by 2
3) Truallate left 3 and down 1
c. What is the domain?
$(-\infty, \infty)$
d. What is the range?
$(-\infty,-1)$
e. What is the equation of the horizontal asymptote?

$$
y=-1
$$

3. $H(x)=2(1.25)^{-x+2}+3$
a. Is the function a growth or a decay? Justify your answer.

$$
H(x)=2(1.25)^{-(x-2)}+3
$$

$H(x)$ has a horizontal reflection
$\therefore H(x)$ is decaying

b. What is the parent function? How is this function's graph different from that of the parent function?

$$
y=(1.05)^{x}
$$

1) Reflect horizontally
2) Streten vertically by 2
3) Translate right 2 ard up 3
c. What is the domain?

$$
(-\infty, \infty)
$$

d. What is the range?

$$
(3, \infty)
$$

e. What is the equation of the horizontal asymptote?
$y=3$
4. Consider the two functions below to answer the questions that follow:

$$
f(x)=-\left(\frac{3}{2}\right)^{-x-1}+2
$$

$$
p(x)=(0.5)^{x-2}
$$

a. One of the functions is a growth and one is a decay. Which is which and how do you know based on the equations?

$$
f(x)=-\left(\frac{3}{2}\right)^{-(x+1)}+2 \quad p(x)=(2)^{-(x-2)}
$$

$p(x)$ has a horizontal reflection $\therefore p(x)$ is decay.

b. What is the range of $f(x)$? Explain how you know based on the equation of the function.
$f(x)$ is increasing and below the $H A{ }_{o} F y=2$ (Due to douse reflection)
$\therefore f(x)$ has a range of $(-\infty, 2)$
c. The point $(-2,4)$ is a point on the graph of $y=(0.5)^{x}$. What is the corresponding point on the graph of $p(x)$? Explain your reasoning.

$$
\begin{aligned}
& y=(2)^{-x} \\
& p(x)=(2)^{-(x-2)} \\
& p(x) \text { is translated right } 2 \text { from } y=(2)^{-x} \\
& \therefore(-2,4) \Rightarrow(0,4)
\end{aligned}
$$

d. For what values) of x is $f(x)=p(x)$? Round your answers) to the nearest thousandth and explain how you determined the values).

$$
f(x)=-\left(\frac{3}{2}\right)^{-(x+1)}+2 \quad p(x)=(2)^{-(x-2)}
$$

$$
\begin{gathered}
-\left(\frac{3}{2}\right)^{-(x+1)}+2=(2)^{-(x-2)} \\
x \approx 1.314
\end{gathered}
$$

Graphically $f(x)=p(x)$
when $f(x)$ crosses $p(x)$.

\qquad
5. Consider $g(x)=(2)^{x+2}-2$
a. Explain what changes would be made to the graph of $y=(2)^{x}$ to obtain the graph of $g(x)$.

- Translate left 2 and dawn 2
b. What (x, y) coordinate rule would transform points on the graph of $y=(2)^{x}$ into points on the graph of $g(x)$?

$$
(x, y) \rightarrow(x-2, y-2)
$$

c.
draw the graph of $g(x)$.

- $g(x)$ hes a constant of -2
$\therefore g(x)$ his $1+A \& y=-2$
- $a>0 \therefore g(x)$ is abuse $H A$
- $c>0 \therefore g(x)$ goes away from $H A$
- $(x, y) \rightarrow(x-2, y-2)$

$$
(0,1) \rightarrow(-2,-1)
$$

6. Consider $f(x)=-(2)^{x-3}-2$
a. Explain what changes would be made to the graph of $y=(2)^{x}$ to obtain the graph of $f(x)$.
vertical reflection
Translate right 3 and down 2
b. What (x, y) coordinate rule would transform points on the graph of $y=(2)^{x}$ into points on the graph of $f(x)$?

$$
(x, y) \rightarrow(x+3,-y-2)
$$

c.
draw the graph of $g(x)$.

- $g(x)$ has a constant of -2

$$
\therefore g(x) \text { has } H A \& y=-2
$$

- $a<0 \therefore g(x)$ is bola $1+4$
- $C>0 \therefore g(x)$ goes away frow $H A$
- $(x, y) \rightarrow(x+3,-y-2)$

$$
(0,1) \rightarrow(3,-3)
$$

