\qquad
Review Unit 5 Day 2 no calculator free response question 2

Consider the logarithm functions below to answer the following questions.

$$
f(x)=-2+\ln (6+3 x) \quad g(x)=2 \ln x+\ln (x+2)
$$

a. For what values) of x is $f(x)=3$. Leave your answers) in terms of e.

$$
\begin{aligned}
& 3=-2+\ln (6+3 x) \\
& 5=\ln (6+3 x) \quad \text { (Log form) } \\
& e^{5}=6+3 x \quad \text { (Exp form) } \\
& e^{5}-6=3 x \\
& \frac{1}{3} e^{5}-2=x
\end{aligned}
$$

b. Identify the equation of the vertical asymptote of the graph of $f(x)$. Does the graph lie to the left or to the right of the vertical asymptote? Show your work and explain your reasoning.

$$
\begin{aligned}
6+3 x & >0 \\
3 x & >-6 \\
x & >-2 \\
\therefore \text { VA \& } x & =-2
\end{aligned}
$$

\therefore The graph lies to right of $V A$

FREE RESPONSE continued
c. Find the equation of $f^{-1}(x)$ in the form $f^{-1}(x)=a \cdot b^{x+c}+d$. Show your work.

$$
\begin{aligned}
f(x) & =-2+\ln (6+3 x) \\
x & =-2+\ln (6+3 y) \\
x+2 & =\ln (6+3 y) \quad(\log \text { form }) \\
e^{x+2} & =6+3 y \quad(\text { Exp fork }) \\
e^{x+2}-6 & =3 y \\
\frac{1}{3} e^{x+2}-2 & =f^{-1}(x)
\end{aligned}
$$

d. For what values) of x does $g(x)=\ln (3 \mathrm{x})$. Show your work.

$$
\begin{aligned}
& g(x)=2 \ln x+\ln (x+2) \\
& \ln (3 x)=2 \ln x+\ln (x+2) \\
& \ln (3 x)=\ln x^{2}+\ln (x+2) \\
& \ln (3 x)=\ln x^{2}(x+2) \\
& 3 x=x^{2}(x+2) \\
& 3 x=x^{3}+2 x^{2} \\
& 0=x^{3}+2 x^{2}-3 x \\
& 0=x\left(x^{2}+2 x-3\right) \\
& 0=x(x+3)(x-1) \\
& x-3, x>0, x=1
\end{aligned}
$$

\qquad

MULTIPLE CHOICE

8. Which of the following statements is/are true?
False I. $\log _{3}\left(\frac{1}{27}\right)=-4$
True
II. $\log _{2}\left(2^{x-3}\right)=x-3$
$(x-3) \log _{2} 2=x-3$
$-3 t-4$
$(x-3) \cdot 1=x-3$
A. II II, and III
B. II only
C. II and III only
D. I and III only
E. III only
9. Write the expanded logarithmic expression $3 \log x-\frac{1}{5} \log y+\log z$ in condensed form.

$$
\begin{aligned}
& =\log x^{3}-\log y^{\frac{1}{5}}+\log z \\
& =\log \left(\frac{x^{3} z}{\sqrt[5]{y}}\right)
\end{aligned}
$$

10. Between what two integers does the value of $\log _{5} 130$ lie?

$$
\begin{array}{ll}
S^{2}=25 \\
5^{3}=125 \\
s^{4}=625
\end{array} \quad \log _{5} 130 \quad 15 \text { between } 3 \text { and } 4
$$

11. What is the equation of the asymptote of the inverse function, $f^{-1}(x)$, if $f(x)=2^{x-3}-5$?
A. $x=3$
B. $y=3$
C. $y=-3$
(D. $x=-5$
E. $y=-5$
\qquad

x	-5	-2	0	2	4	6
$f(x)$	-2.999	-2.982	-2.865	-2	4.389	51.598

12. A table of values for the exponential function $H(x)=a \cdot b^{x}+k$ is pictured above. Which of the statements below is/are true?
I. The graph of $\mathrm{H}^{-1}(\mathrm{x})$ lies to the right of the vertical asymptote. True
II. The value of k in the equation of $H(x)$ is 52 . Wal $\mathbb{\&}, 1<=-3(H A C y=-3)$

Fab \& III. The argument of $\mathrm{H}^{-1}(\mathrm{x})$ could be $(-x-3) . \quad-x-3>0$

B. I and III only $\quad x<-3$
C. II and III only
D. II only
E. I, II and III
13. Consider the logarithmic function $f(x)=\log _{2}(2-5 x)$ to determine which of the following statements is/are true.

True I. The value of $x=0$ is in the domain of the function $f(x) . \begin{aligned} & 2-5 x>0 \\ &-5 x>-2 \\ & x<^{2} / 5\end{aligned}$
Wal \& II. The value of $f(-1)$ is between 2 and 3 , but closer to 2. $f(-1)=\log _{2}(7) \longrightarrow \begin{aligned} & 2=4 \\ & 2^{2}=8\end{aligned}$
Fall \& III. The graph of $f^{-1}(x)$ has a horizontal asymptote at $y=-\frac{2}{5}$ f has VA © $x=\frac{2}{5}$
A. I only
B. I and II only
C. II only
D. II and III only
E. III only
14. Solve for $\mathrm{x}: 2-\mathrm{e}^{5 \mathrm{x}+3}=10$

$$
\begin{aligned}
-e^{5 x+3} & =8 \\
e^{5 x+3} & =-8 \quad(\text { Exp form })
\end{aligned}
$$

$\ln (-8)=5 x+3 \quad(\log$ form $)$

Argument must be greater then zero
\therefore No Solution

