Free Response Question 6
Calculator NOT Permitted

Consider the logarithmic equation $f(x)=-2+\log _{3}(4-2 x)$ to answer the following questions.
a. Suppose $f(x)=0$. Find the value of x. Show your work and explain what the work represents in terms of the graph of the equation.

$$
\begin{array}{ll|l}
0=-2+\log _{3}(4-2 x) & \\
2=\log _{3}(4-2 x) & \text { (Log Form) } & \begin{aligned}
& \text { when } f(x)=0, \text { the graph crosses } \\
& 3^{2}=4-2 x \text { the } x \text {-axis }
\end{aligned} \\
9=4-2 x & (\text { Exp Form }) & \therefore f(x) \text { has an } x \text {-intercept of }(-5 / 2,0) \\
5=-2 x & \\
-5 / 2=x & +1
\end{array}
$$

b. Determine the domain and range of the function, $f(x)$.

Domain

$$
\begin{aligned}
4-2 x & >0 \\
-2 x & >-4 \\
x & <2
\end{aligned}
$$

c. The inverse function, $f^{-1}(x)$, is an exponential function. Will the graph of $f^{-1}(x)$ lie above or below its horizontal asymptote? Explain your reasoning.

$$
\text { Resangenge }(-\infty, 2)+1
$$

$\therefore P^{\prime \prime}(x)$ his blat the $H A$
d. Find the exponential function, $f^{-1}(x)=a \cdot b^{x+c}+d$, that is the inverse of the logarithm function, $f(x)$.

$$
\begin{aligned}
x & =-2+\log _{3}(4-2 y)+1 \\
x+2 & =\log _{3}(4-2 y) \\
3^{x+2} & =4-2 y+1 \\
3^{x+2}-4 & =-2 y \\
-\frac{1}{2} \cdot(3)^{x+2}+2 & =y \\
f^{-1}(x)= & -\frac{1}{2}(3)^{x+2}+2+1
\end{aligned}
$$

