Free Response Question 2
Calculator Permitted

Consider the two logarithm functions below to answer the questions that follow. If ever the value of a logarithm is undefined, explain why it is so.

$$
\begin{array}{cc}
x>5 & \\
f(x)=\log _{3}(x-5)+\log _{3} x & g(x)=\log _{3}(6-4 x)
\end{array}
$$

a. Rewrite $f(x)$ as a logarithm function of a single logarithm. Then, find the value of $f(7)$.

$$
\begin{aligned}
f(x) & =\log _{3}(x-5)+\log _{3} x \\
f(x) & =\log _{3}\left(x^{2}-5 x\right) \\
& =\log _{3}[49-35] \\
& =\log _{3}[14] \\
f(7) & =\frac{\log _{3}\left[(7)^{2}-5(7)\right]}{\log _{3}} \\
f(7) & \approx 2.402
\end{aligned}
$$

b. If $h(x)=g(x)-f(x)$, find an equation for $h(x)$ that contains a single logarithm and then find the value of $h(1)$.

$$
\begin{aligned}
& h(x)=g(x)-f(x) \\
& h(x)=\log _{3}(6-4 x)-\log _{3}\left(x^{2}-5 x\right) \\
& h(x)=\log _{3} \frac{6-4 x}{x^{2}-5 x}+1
\end{aligned}
$$

$$
\begin{aligned}
h(1) & =\log _{3} \frac{6-4(1)}{(1)^{2}-5(1)} \\
& =\log _{3} \frac{6-4}{1-5} \\
& =\log _{3}\left(\frac{2}{-4}\right) \\
h(1) & =\log _{3}\left(-\frac{1}{2}\right)+1
\end{aligned}
$$

$h(1)$ is undefined because the +1 argument must be >0 to be defined.
c. For what values) of x is $f(x)=g(x)$? Show the algebraic analysis that leads to your answer.

$$
\begin{aligned}
g(x) & =f(x) \\
\log _{3}(6-4 x) & =\log _{3}\left(x^{2}-5 x\right) \\
6-4 x & =x^{2}-5 x \\
0 & =x^{2}-x-6 \\
0 & =(x-3)(x+2) \\
x & =-3
\end{aligned}
$$

$g(x)=f(x)$ has no solution because $x=3$ makes $f(x)$ undefined? and $x=-2$ makes $g(x)$ undefined. S

