Homework 4.3
For problems $1-4$, find each of the indicated graphical properties. If a function does not have a particular property, explain why it does not. Show your work or explain your reasoning.

Zero $0 x=-4 / 3$

1. $f(x)=\frac{(3 x+4)(x+2)}{(x-4)(x+2)}=\frac{3 x-4}{x-4}$, hole $\left(-2, \frac{1}{3}\right)$
vA OX $=4 \quad$ Hole $O_{x}=-2$
(a) Zero(s): $\left(-\frac{4}{3}, 0\right)$
(b) y-intercept $(0,-1)$

$$
\begin{aligned}
3 x+4 & =0 \\
3 x & =-4 \\
x & =-4 / 3
\end{aligned}
$$

(c) Vertical

Asymptote (s):

$$
\begin{aligned}
x-4 & =0 \\
x & =4
\end{aligned}
$$

(d) Coordinates of holes):

$$
\begin{array}{rl}
x+2=0 & y \\
x=-2 & \frac{3 x+4}{x-4} \\
y & =\frac{3(-2)+4}{(-2)-4} \\
y & =\frac{-6+4}{-6} \\
\left(-2, \frac{1}{3}\right) \quad y & =\frac{-2}{-6} \\
y & =\frac{1}{3}
\end{array}
$$

y int $=3$
3. $h(x)=\frac{2 x-6}{x^{2}-x-2}=\frac{2(x-3) z e r 0}{(x-2)(x+1)}$
(a) Zero (s) $(3,0)$

$$
\begin{gathered}
x-3=0 \\
x=3 \\
\text { (c) Vertical } \\
\text { Asymptotes): } \\
x-2=0 \quad x+1=0 \\
x=2 \quad x=-1
\end{gathered}
$$

(b) y-intercept: $(0,3)$
(d) Coordinates of holes):
$n(x)$ does not have any holes because there are no canceling factors is the ratio.
2. $\begin{aligned} & \text { y-int }=-1 \\ & \text { Hole } \text { zeno } \\ & x^{2}+x-6 \\ &(x+5)(x+2) \frac{(x+5)(x-2)^{2}}{(x+6)}\end{aligned}$
(a) Zeros): 2,0$)$
(b) y-intercept: $(0,-1)$

$$
y-\ln t=\frac{y}{-y}=-1
$$

$$
\begin{array}{r}
x-2=0 \\
x=2
\end{array}
$$

$$
y \operatorname{-int}=\frac{-6}{6}=-1
$$

(c) Vertical Asymptote (s):

$$
\begin{aligned}
& x+2=0 \\
& x=-2
\end{aligned}
$$

(d) Coordinates of holes):

$$
\begin{array}{rl}
(s): \\
x+3=0 \\
x=-3 & p(x)
\end{array} \left\lvert\, \begin{aligned}
& x-2 \\
& p(-3)=\frac{(-3)-2}{(-3)+2} \\
&=\frac{-5}{-1} \\
& p(-3)=5
\end{aligned}\right.
$$

$$
(-3,5)
$$

4. $g(x)=\frac{2 x^{2}-5 x / 2}{x^{2}-4}=\frac{z^{z-10} \quad(-3,5)}{\left.\begin{array}{l}2 x-1)(x-5)^{2} \\ (x+2)(x-2) \\ v^{\lambda}\end{array}\right)}$
(a) Zeros):
(b) y-intercept:

$$
\begin{aligned}
2 x-1 & =0 \\
2 x & =1 \\
x & =1 / 2
\end{aligned}
$$

$$
y \text {-int }=\frac{2}{-4}=-\frac{1}{2}
$$

(c) Vertical Asymptote (s):

$$
\begin{aligned}
& x+2=0 \\
& x=-2
\end{aligned}
$$

(d) Coordinates of holes):

$$
\begin{gathered}
\left.\begin{array}{l|l}
x-2=0 & g(x)=\frac{2 x-1}{x+2} \\
x=2 & g(2)
\end{array}\right)=\frac{2(2)-1}{(2)+2} \\
\\
=\frac{4-1}{4} \\
g(2)=3 / 4
\end{gathered}
$$

5. In both factored and standard form, what is an equation of the rational function, $h(x)$, pictured to the right?

$$
\begin{aligned}
& h(x)=\frac{(2 x+3)(x+2)}{(x+3)(x+2)} \\
& h(x)=\frac{2 x^{2}+7 x+6}{x^{2}+5 x+6}
\end{aligned}
$$

Is the y-int correct?
It not, milt numerator by
a number to fix it.

The graph of a rational function, $g(x)$, is pictured below. Answer the questions that follow.

7. What factor is guaranteed to be in both the numerator and denominator of the equation of $g(x)$? Justify your answer. at $x=-1$
$\therefore g(x)$ is guaranteed to have
a factor of $(x+1)$ in both the numerator and denominator.
9. If $g\left(\frac{3}{2}\right)=0$, then what is the equation of $g(x)$ in both factored and standard form?

$$
\begin{aligned}
& g(x)=\frac{(2 x-3)(x+1)}{(x+3)(x+1)} \\
& g(x)=\frac{2 x^{2}-x-3}{x^{2}+4 x+3}
\end{aligned}
$$

6. What factors) is/are guaranteed to be in the denominator of the equation of $g(x)$? Justify your answer.

$$
\begin{aligned}
& g(x) \text { is unde fined at } x=-3 \text { and } x=-1 \\
& \therefore g(x) \text { is guaranteed to have a } \\
& \text { factor of }(x+3) \text { and }(x+1)
\end{aligned}
$$

in the denominator.
8. What factor is guaranteed to be in the denominator of the equation of $g(x)$ but not in the numerator? Justify your answer.

$$
\begin{aligned}
& g(x) \text { has a vertical asymptote } \\
& \text { at } x=-3 \\
& \therefore g(x) \text { is guaranteed to have a factor } \\
& \text { of }(x+3) \text { in the denominator }
\end{aligned}
$$

10. What are the domain and range of $g(x)$?

Domain: $(-\infty,-3) \cup(-3,-1) \cup(-1, \infty)$
Range: $(-\infty,-5 / 2) \cup(-5 / 2,2) \cup(2, \infty)$

