Review Test #1

Calculator NOT Permitted

Multiple Choice

1.	A
2.	A
3.	A
4.	Ð
5.	E
6.	C
7.	В
8.	C
9.	C

Multiple Choice	
Free Response	
Total out of 18 points	

This reviews the second half of unit 1. Please also study quiz #1 review, each FRO from the homework, and read over your notes

Name

FREE RESPONSE

Consider the two piece-wise defined functions, f(x) and g(x), below to answer the questions that follow.

$$f(x) = \begin{cases} \frac{1}{2}x^2 - x + 2, & -4 < x \le -2\\ \sqrt{x+6} + 4, & x > -2 \end{cases} \qquad \qquad g(x) = \begin{cases} \frac{1}{2}x + 4, & x < -4\\ -\frac{1}{2}x, & x > -4 \end{cases}$$

a. Using interval notation, identify the domain of both functions.

b. Find the values of f(-2) and g(f(3)). Show the analysis that leads to your answers.

$$f(-3) = \frac{1}{2}(-3)^{2} - (-3) + 2$$

$$f(3) = \sqrt{(3) + 6} + 4$$

$$f(3) = \sqrt{(4) + 2} + 2$$

$$f(3) = \sqrt{(3) + 6} + 4$$

$$f(3) = \sqrt{(4) + 2} + 2$$

$$f(3) = \sqrt{(4) +$$

Name

c. Does f(x) have a discontinuity at x = -2? If so, classify the discontinuity, justifying your conclusion.

I.
$$f(-2) = 6$$
 +1

 $\therefore f(-3)$ is defined.
 (-3) is defined.

 II. $\lim_{x \to -2^{-}} f(x) = \frac{1}{2}(-3)^{2} - (-3)^{2} = \frac{1}{2}(4) + 3 + 3 = 3 + 3 = 36$
 $\lim_{x \to -2^{-}} f(x) = \sqrt{(-3)^{2} - (-3)^{2} - (-3)^{2} - 2} = \frac{1}{2}(4) + 3 + 3 = 3 + 3 = 36$
 $\lim_{x \to -2^{-}} f(x) = \sqrt{(-3)^{2} - (-3)^{2} - 2} = \frac{1}{2}(4) + 3 + 3 = 3 + 3 = 36$
 $\lim_{x \to -2^{+}} f(x) = \sqrt{(-3)^{2} - (-3)^{2} - 2} = \frac{1}{2}(4) + 3 + 3 = 3 + 3 = 36$
 $\lim_{x \to -2^{+}} f(x) = \sqrt{(-3)^{2} - 6} + 4 = 3 + 4 = 36$
 $\lim_{x \to -2^{+}} f(x) = \sqrt{(-3)^{2} - 6} + 1$
 $\lim_{x \to -2^{-}} f(x) = \sqrt{(-3)^{2} - 6} + 1$
 $\lim_{x \to -2^{-}} f(x) = \sqrt{(-3)^{2} - 6} + 1$
 $\lim_{x \to -2^{+}} f(x) = \sqrt{(-3)^{2} - 6} + 1$
 $\lim_{x \to -2^{-}} f(x) = \sqrt{(-3)^{2} - 6} + 1$
 $\lim_{x \to -2^{+}} f(x) = \sqrt{(-3)^{2} - 6} + 1$

d. Does g(x) have a discontinuity at x = -4? If so, classify the discontinuity, justifying your conclusion.

I.
$$g(-4)$$
 (s undefined $+$)
II.
$$\lim_{X\to -4^{+}} g(x) = \frac{1}{2}(-4) + 4 = -3 + 4 = 2$$

$$\lim_{X\to -4^{+}} g(x) = -\frac{1}{2}(-4) = 2$$

$$\lim_{X\to -4^{+}} g(x) = \frac{1}{2}(-4) = 2$$

MULTIPLE CHOICE

Use the graph to answer questions 1 and 2. The dashed graph is f(x) and the solid graph is g(x).

1. At which of the following values of x is f(x) < 0 and f(x) < g(x)?

2. Which of the following best describes where the graph of $g(x) \le 0$?

A.
$$[-5, -3] \cup [6, 7]$$

D. $[-5, -3] \cup [6, 7]$ and $x = 0$
E. $[-3, 6]$

Name

3. Consider the functions $f(x) = 2x^2 + 3x - 2$ and g(x) = x - 2. Find an equation for $(f \cdot g)(x)$.

5. The graph of f(x) is shown to the right and g(x) = 5 - 2x. What is the value of f(g(5))?

- 6. What is the domain of the function $f(x) = \sqrt{9-3x}$.
 - A. $[3,\infty)$ B. $(-\infty,3)$ D. $(-\infty,3)\cup(3,\infty)$ E. $(3,\infty)$

PATR(AxD 20 9-37 20 -3x 2⁻⁹ x = 3

C. $(-\infty, 3]$

Unit #1 - No Calculator Review Test #1 Name ______ page 6
7. For what value of *a* would the function
$$g(x) = \begin{cases} ax - 3, x < -2 \\ x^2 - 2x, x > -2 \end{cases}$$
 have a point discontinuity at $x = -2$.
A. $a = \frac{5}{2}$ B. $a = -\frac{11}{2}$ B. $a = -\frac{11}{2}$ B. $a = -\frac{11}{2}$ B. $a = -\frac{3}{2}$ B. $a = -\frac{3}{2}$

II. f(x) = g(x) only at x = 5.

III. f(x) > g(x) only on the interval (5, 6).

9. If $p(x) = 2mx^2 - 3x$, for what value(s) of *m* would p(-1) = f(g(0))?

A.
$$m = -\frac{1}{2}$$

B. $m = \frac{5}{2}$
C. $m = -\frac{3}{2}$
D. $m = \frac{3}{2}$

E. No value of *m* would make p(-1) = g(f(0)).

$$2m(-i)^{2} - 3(-i) = f(g(o))$$

 $2m(i) + 3 = f(o)$
 $2m + 3 = 0$
 $2m = -3$
 $m = -3/2$