Calculator NOT Permitted

Multiple Choice

1.	A
2.	D
3.	A
4.	D
5.	E
6.	C
7.	B
8.	C
9.	C

| Multiple
 Choice | |
| :---: | :--- | :--- |
| Free
 Response | |
| Total out of
 18 points | |

\qquad

Consider the two piece-wise defined functions, $f(x)$ and $g(x)$, below to answer the questions that follow.

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{2} x^{2}-x+2, & -4<x \leq-2 \\
\sqrt{x+6}+4, & x>-2
\end{array} \quad g(x)= \begin{cases}\frac{1}{2} x+4, & x<-4 \\
-\frac{1}{2} x, & x>-4\end{cases}\right.
$$

a. Using interval notation, identify the domain of both functions.

Domain of $f(x):(-4, \infty) \quad$ Domain of $g(x):(-\infty,-4) \cup(-4, \infty)$

b. Find the values of $f(-2)$ and $g(f(3))$. Show the analysis that leads to your answers.

$$
\begin{aligned}
& f(-2)=\frac{1}{2}(-2)^{2}-(-2)+2|f(3)=\sqrt{(3)+6}+4| g(f(3))=g(7) \\
& =\frac{1}{2}(u)+2+2=\sqrt{9}+4 \\
& =2+2+2 \\
& f(-2)=6 \\
& =3+4 \\
& f(3)=7 \\
& =-\frac{1}{2}(7) \\
& g(f(3))=-\frac{7}{2}
\end{aligned}
$$

\qquad
c. Does $f(x)$ have a discontinuity at $x=-2$? If so, classify the discontinuity, justifying your conclusion.
I. $f(-2)=6$
$\therefore f(-2)$ is defined.
II.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x)=\frac{1}{2}(-2)^{2}-(-2)+2=\frac{1}{2}(4)+2+2=2+ \\
& \lim _{x \rightarrow-2^{+}} f(x)=\sqrt{(-2)+6}+4=\sqrt{4}+4=2+4=6
\end{aligned}
$$

$\therefore \lim _{x \rightarrow-2} f(x)$ exists
III $\lim f(x)=f(-2)=6$
$\therefore f(x)$ is continuous at x
I. $g(x)$ have a discontinuity at $x=-4$? If so
is undefined +1
II. $\lim _{x \rightarrow-4^{-}} g(x)=\frac{1}{2}(-4)+4=-2+4=2$

$$
\begin{aligned}
& \lim _{x \rightarrow-4^{+}} g(x)=-\frac{1}{2}(-4)=2 \\
& \lim _{x \rightarrow-4} g(x) \text { exists }
\end{aligned}
$$

III $g(-4) \pm \lim _{x \rightarrow-4} g(x)$
$\therefore g(x)$ has point discontinuity at $x=-4$ $+1$

MULTIPLE CHOICE

Use the graph to answer questions 1 and 2 . The dashed graph is $f(x)$ and the solid graph is $g(x)$.

1. At which of the following values of x is $f(x)<0$ and $f(x)<g(x)$?

2. Which of the following best describes where the graph of $g(x) \leq 0$? x
A. $[-5,-3] \cup[6,7]$
B. $(-3,0) \cup(0,6)$
D. $[-5,-3] \cup[6,7]$ and $x=0$
Е. $[-3,6]$
c. $(-5,-3] \cup[6,7)$
3. Consider the functions $f(x)=2 x^{2}+3 x-2$ and $g(x)=x-2$. Find an equation for $(f \cdot g)(x)$.
A. $(f \cdot g)(x)=2 x^{3}-x^{2}-8 x+4$
B. $(f \cdot g)(x)=2 x^{3}-4 x^{2}-5 x+4$
C. $(f \cdot g)(x)=2 x^{2}-5 x$

D. $(f \cdot g)(x)=x^{2}-8 x+4$

$$
\begin{aligned}
=2 x^{3}+3 x^{2}-2 x \\
-4 x^{2}-6 x+4
\end{aligned} \frac{2 x^{3}-x^{2}-8 x+4}{}
$$

4. Identify the domain of the function $g(x)=\frac{3-x}{x^{2}-x-20}$
A. $(-\infty,-4) \cup(-4,3) \cup(3,5) \cup(5, \infty)$
B. $(-\infty, 3) \cup(3, \infty)$
C. $(-\infty, \infty)$
E. The domain cannot be determined.
D. $(-\infty,-4) \cup(-4,5) \cup(5, \infty)$
5. The graph of $f(x)$ is shown to the right and $g(x)=5-2 x$. What is the value of $f(g(5))$?
A. -3
B. 7
C. 19
$g(5)=5-2(5)=-5$
D. -2

E. Undefined

6. What is the domain of the function $f(x)=\sqrt{9-3 x}$.
A. $[3, \infty)$
B. $(-\infty, 3)$
D. $(-\infty, 3) \cup(3, \infty)$
E. $(3, \infty)$
C. $(-\infty, 3]$

RADIANT 20

$$
\begin{array}{rl}
9-3 x & 20 \\
-3 & \times-9 \\
x & \leqslant 3
\end{array}
$$

\qquad
7. For what value of a would the function $g(x)=\left\{\begin{array}{l}a x-3, x<-2 \\ x^{2}-2 x, x>-2\end{array}\right.$ have a point discontinuity at $x=-2$.

$$
\lim _{x \rightarrow-2-}(a x-3)=\lim _{x \rightarrow-2+}\left(x^{2}-2 x\right)
$$

A. $a=\frac{5}{2}$
B. $a=-\frac{11}{2}$
C. $a=-\frac{5}{2}$
D. $a=-\frac{3}{2}$
$a(-2)-3=(-2)^{2}-2(-2)$
$-2 a-3=4+4$
$-2 a=11$
E. No value of a will make the function have a point discontinuity at $x=-2$.

8. Which of the following statements is/are true about the graphs of $f(x)$ and $g(x)$?
I. $f(x)$ is increasing on the intervals $(-5,-2)$ and $(2,7)$.
II. $f(x)=g(x)$ only at $x=5$.
III. $f(x)>g(x)$ only on the interval $(5,6)$.
A. I only
B. I and II only
C. I, II and III
D. II and III only
E. II only
9. If $p(x)=2 m x^{2}-3 x$, for what values) of m would $p(-1)=f(g(0))$?
A. $m=-\frac{1}{2}$
B. $m=\frac{5}{2}$
C. $m=-\frac{3}{2}$
D. $m=\frac{3}{2}$
$2 m(-1)^{2}-3(-1)=f(g(0))$
$2 m(1)+3=f(2)$
E. No value of m would make $p(-1)=g(f(0))$.

$$
2 m+3=0
$$

$$
2 m=-3
$$

$$
m=-3 / 2
$$

