Review Test #1

Calculator NOT Permitted

Multiple Choice

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	

Multiple Choice	
Free Response	
Total out of 18 points	

This reviews the second half of unit 1. Please also study quiz #1 review, each FRQ from the homework, and read over your notes.

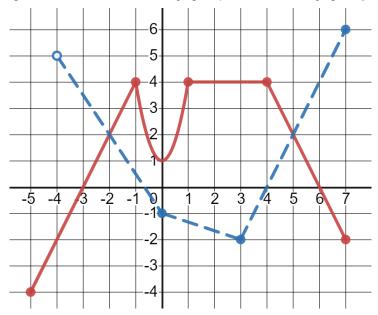
FREE RESPONSE

Consider the two piece-wise defined functions, f(x) and g(x), below to answer the questions that follow.

$$f(x) = \begin{cases} \frac{1}{2}x^2 - x + 2, & -4 < x \le -2 \\ \sqrt{x+6} + 4, & x > -2 \end{cases} \qquad g(x) = \begin{cases} \frac{1}{2}x + 4, & x < -4 \\ -\frac{1}{2}x, & x > -4 \end{cases}$$

a. Using interval notation, identify the domain of both functions.

Domain of *f*(*x*):_____ Domain of *g*(*x*):_____


b. Find the values of f(-2) and g(f(3)). Show the analysis that leads to your answers.

c. Does f(x) have a discontinuity at x = -2? If so, classify the discontinuity, justifying your conclusion.

d. Does g(x) have a discontinuity at x = -4? If so, classify the discontinuity, justifying your conclusion.

MULTIPLE CHOICE

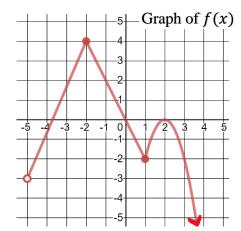
Use the graph to answer questions 1 and 2. The dashed graph is f(x) and the solid graph is g(x).

1. At which of the following values of *x* is f(x) < 0 and f(x) < g(x)?

I. x = -1 II. x = 2 III. x = 4

- A. II only
- B. I and II only
- C. III only
- D. II and III only
- E. I, II, and III

2. Which of the following best describes where the graph of $g(x) \le 0$?

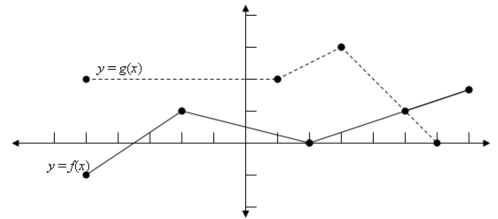

A.
$$[-5, -3] \cup [6, 7]$$
B. $(-3, 0) \cup (0, 6)$ C. $(-5, -3] \cup [6, 7]$ D. $[-5, -3] \cup [6, 7]$ and $x = 0$ E. $[-3, 6]$

Name ____

- 3. Consider the functions $f(x) = 2x^2 + 3x 2$ and g(x) = x 2. Find an equation for $(f \cdot g)(x)$.
 - A. $(f \cdot g)(x) = 2x^3 x^2 8x + 4$ B. $(f \cdot g)(x) = 2x^3 - 4x^2 - 5x + 4$ C. $(f \cdot g)(x) = 2x^2 - 5x$ D. $(f \cdot g)(x) = x^2 - 8x + 4$
 - E. None of these

4. Identify the domain of the function $g(x) = \frac{3-x}{x^2 - x - 20}$

- A. $(-\infty,-4)\cup(-4,3)\cup(3,5)\cup(5,\infty)$ B. $(-\infty,3)\cup(3,\infty)$ C. $(-\infty,\infty)$ D. $(-\infty,-4)\cup(-4,5)\cup(5,\infty)$
- E. The domain cannot be determined.
- 5. The graph of f(x) is shown to the right and g(x) = 5 2x. What is the value of f(g(5))?
 - A. -3
 - B. 7
 - C. 19
 - D. –2
 - E. Undefined



- 6. What is the domain of the function $f(x) = \sqrt{9-3x}$.
 - A. $[3,\infty)$ B. $(-\infty,3)$ C. $(-\infty,3]$
 - D. $(-\infty,3)\cup(3,\infty)$ E. $(3,\infty)$

Name ____

- 7. For what value of *a* would the function $g(x) = \begin{cases} ax 3, x < -2 \\ x^2 2x, x > -2 \end{cases}$ have a point discontinuity at x = -2.
 - A. $a = \frac{5}{2}$ B. $a = -\frac{11}{2}$ C. $a = -\frac{5}{2}$ D. $a = -\frac{3}{2}$
 - E. No value of *a* will make the function have a point discontinuity at x = -2.

Use the graphs of f(x) and g(x) pictured below to answer question 8 and 9.

- 8. Which of the following statements is/are true about the graphs of f(x) and g(x)?
 - I. f(x) is increasing on the intervals (-5, -2) and (2, 7).
 - II. f(x) = g(x) only at x = 5.
 - III. f(x) > g(x) only on the interval (5, 6).
 - A. I only
 - B. I and II only
 - C. I, II and III
 - D. II and III only
 - E. II only
- 9. If $p(x) = 2mx^2 3x$, for what value(s) of *m* would p(-1) = f(g(0))?

A. $m = -\frac{1}{2}$ B. $m = \frac{5}{2}$ C. $m = -\frac{3}{2}$ D. $m = \frac{3}{2}$ E. No value of *m* would make p(-1) = g(f(0)).