Multiple Choice	$\times(9 / 7)$	
Free Response	$\times 1$	
Total Score out of 18		

Multiple Choice

1.	2.	3.	4.	5.	6.	7.
B	C	A	E	C	E	B

\qquad
FREE RESPONSE - NO Calculator

Consider the graph of the piece-wise defined function, $h(x)$, pictured.
a. If $h(x) \leq 0$, then explain in words what must be true graphically. Then, state the values) of x for which $h(x) \leq 0$.

b. Find the values) of x for which $h(x)=-2$. Using the graph, Explain your reasoning.
$+1$
$h(x)=-2$ when $x=-3.5, x=-2.5$, and $x=2$
+1 when $h(x)=-2$, the graph of $h(x)$ has a y-value of -2 .
\qquad
c. On the grid below, graph he function $f(x)=(x-1)^{2}-3$. Then, state he values of x for which $f(x)=h(x)$. Explain how you determined the values of x. If a value of x has been approximated, please denote that using proper notation.

d. If $p(x)=3 a x^{2}-2 x$, then for what values) of a does $p(-2)=[2 h(-4)+h(0)]$. Show your work.

$$
\begin{aligned}
& p(-2)=2 h(-4)+h(0) \\
& 3 a(-2)^{2}-2(-2)=2(-1)+3 \\
& 3 a(4)+4=-2+3 \\
& 12 a+4=1 \\
& 12 a=-3+1 \\
& a=\frac{-3}{12} \\
& a=\frac{-1}{4} \\
& \ddots
\end{aligned}
$$

MULTIPLE CHOICE - NO Calculator

1. Suppose that $g(x)=-(x-1)^{2}+2$. Which of the following statements is true if $f(x)$ is the function pictured?

$$
\begin{aligned}
g(2) & =-(2-1)^{2}+2 \\
& =-(1)^{2}+2 \\
& =-1+2 \\
& =1 \\
g(2) & >0
\end{aligned}
$$

$$
f(1.5)<0
$$

A. $g(2)<f(1.5)$
B. $g(2)>f(1.5)$
C. $g(2)=f(1.5)$
D. No comparison can be made because $f(1.5)$ cannot be determined.
E. No comparison can be made because $g(2)$ cannot be determined.
2. The graph of a function $h(x)$ is pictured. If $p(x)=3|x+2|-4$, then for what values) of x is the function $p(x)=h(4)$?
A. $x=-1$ only
B. $x=-3$ and -1
C. $x=-3$ and -1

$$
-1=3|x+2|-4
$$

D. $x=-5$ and 1
E. $x=-1$ and 5

$$
3=3|x+2|
$$

$$
1=|x+2|
$$

$$
\pm 1=x+2
$$

$$
-2 \pm 1=x
$$

$$
-3,-1
$$

\qquad
3. The graph of a function $f(x)$ is pictured. Which of the following statements is/are true about the graph of $f(x)$?
I. The graph of $f(x)$ is decreasing on the interval $(-\infty, 0) \cup(1,3)$.
II. The value of $f(x)=-1$ for all values of x on the interval $[3,6]$. $[3,6)$
III. The domain of $f(x)$ is $(-\infty, 6)$.
A. and III only
B. III only
C. II only
D. II and III only
E. I, II and III

4. The graph of $f(x)$ is shown. Which of the following intervals correctly identifies all values of x for which $f(x)>0$?
A. $(-4,1) \cup(3, \infty)$
B. $[(-4,1] \cup(3, \infty)$
C. $(-4,1) \cup[3, \infty)$
D. $K(-4,-3) \cup(-3,-1) \cup(3, \infty)$
E. $(-4,-3) \cup(-3,-1) \cup(3, \infty)$

\qquad
5. Use the table of values to the right to determine the value of $[f(-1)+2 g(3)]$.
A. 14
B. 10
C. 8
$=2+2(3)$
D. 5
E. -2
$=2+6$
$=8$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
-2	-2	3
-1	2	3
2	0	4
3	-1	3

6. If $g(x)=\sqrt{x-4}+6$, for what value (s) of x is $g(x)=-2$?
A. $x=3$
B. $x=0$
C. $x=8$
D. $x=20$

$-8=\sqrt{x-4}$
This is impossible $\sqrt{ }=$ positive number.
7. Which of the following graphs is the graph of the function $g(x)=(x-3)^{3}+2$?

E. None of these graphs
